Closed tianyouyangying closed 1 year ago
@tianyouyangying can you provide a re-procude case ? thank you
Error: Error operating EXECUTE_STATEMENT: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:651)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:278)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:220)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:622)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:617)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:80)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:88)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.org$apache$kyuubi$engine$spark$operation$ExecuteStatement$$executeStatement(ExecuteStatement.scala:74)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:106)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 5 in stage 18.0 failed 4 times, most recent failure: Lost task 5.3 in stage 18.0 (TID 3032) (dbdz68 executor 26): ExecutorLostFailure (executor 26 exited caused by one of the running tasks) Reason: Container from a bad node: container_e05_1684488042345_3070_01_000034 on host: dbdz68. Exit status: 134. Diagnostics: [2023-06-21 11:21:07.682]Exception from container-launch.
Container id: container_e05_1684488042345_3070_01_000034
Exit code: 134
Exception message: Launch container failed
Shell output: main : command provided 1
main : run as user is hive
main : requested yarn user is hive
Getting exit code file...
Creating script paths...
Writing pid file...
Writing to tmp file /data3/yarn2/nm/nmPrivate/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/container_e05_1684488042345_3070_01_000034.pid.tmp
Writing to cgroup task files...
Creating local dirs...
Launching container...
[2023-06-21 11:21:07.684]Container exited with a non-zero exit code 134. Error file: prelaunch.err.
Last 4096 bytes of prelaunch.err :
/bin/bash: line 1: 25051 Aborted /usr/java/jdk1.8.0_232-cloudera/bin/java -server -Xmx4096m '-XX:+IgnoreUnrecognizedVMOptions' '--add-opens=java.base/java.lang=ALL-UNNAMED' '--add-opens=java.base/java.lang.invoke=ALL-UNNAMED' '--add-opens=java.base/java.lang.reflect=ALL-UNNAMED' '--add-opens=java.base/java.io=ALL-UNNAMED' '--add-opens=java.base/java.net=ALL-UNNAMED' '--add-opens=java.base/java.nio=ALL-UNNAMED' '--add-opens=java.base/java.util=ALL-UNNAMED' '--add-opens=java.base/java.util.concurrent=ALL-UNNAMED' '--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED' '--add-opens=java.base/sun.nio.ch=ALL-UNNAMED' '--add-opens=java.base/sun.nio.cs=ALL-UNNAMED' '--add-opens=java.base/sun.security.action=ALL-UNNAMED' '--add-opens=java.base/sun.util.calendar=ALL-UNNAMED' '--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED' -Djava.io.tmpdir=/data2/yarn2/nm/usercache/hive/appcache/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/tmp '-Dspark.network.timeout=600000' '-Dspark.rpc.askTimeout=1000' '-Dspark.authenticate=false' '-Dspark.network.crypto.enabled=false' '-Dspark.driver.port=35562' '-Dspark.shuffle.service.port=7337' '-Dspark.ui.port=0' -Dspark.yarn.app.container.log.dir=/data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034 -XX:OnOutOfMemoryError='kill %p' org.apache.spark.executor.YarnCoarseGrainedExecutorBackend --driver-url spark://CoarseGrainedScheduler@dbdz68:35562 --executor-id 26 --hostname dbdz68 --cores 8 --app-id application_1684488042345_3070 --resourceProfileId 0 > /data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/stdout 2> /data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/stderr
Last 4096 bytes of stderr :
Using Spark's default log4j profile: org/apache/spark/log4j2-defaults.properties
OpenJDK 64-Bit Server VM warning: You have loaded library /data3/yarn2/nm/usercache/hive/appcache/application_1684488042345_3070/gluten-7eabdaeb-81cc-4668-8833-ff9abca4e26b/jni/87b7d890-af1a-4cc8-8716-8d5959e1723c/gluten-3672577289053489304/libhdfs3.so.1 which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
I20230621 11:21:04.075465 25792 VeloxInitializer.cc:91] STARTUP: VeloxInitializer conf = {
{spark.hadoop.input.connect.timeout, 180000}
{spark.gluten.sql.columnar.backend.velox.IOThreads, 0}
{spark.hadoop.fs.s3a.endpoint, localhost:9000}
{spark.gluten.sql.columnar.backend.velox.SplitPreloadPerDriver, 2}
{spark.hadoop.fs.s3a.access.key, }
{spark.gluten.memory.task.offHeap.size.in.bytes, 1342177280}
{spark.hadoop.input.write.timeout, 180000}
{spark.hadoop.fs.s3a.path.style.access, true}
{spark.hadoop.fs.s3a.use.instance.credentials, false}
{spark.hadoop.fs.s3a.connection.ssl.enabled, false}
{spark.memory.offHeap.enabled, true}
{spark.hadoop.fs.s3a.secret.key, }
{spark.hadoop.input.read.timeout, 180000}
{spark.hadoop.dfs.client.log.severity, INFO}
{spark.gluten.memory.offHeap.size.in.bytes, 10737418240}
}
memPoolOptions = { alignment:64, capacity:7680M, trackUsage:1 }
spillThreshold = 4608M
E20230621 11:21:06.801776 25790 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
E20230621 11:21:07.282449 25791 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
E20230621 11:21:07.311520 25793 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
[2023-06-21 11:21:07.684]Container exited with a non-zero exit code 134. Error file: prelaunch.err.
Last 4096 bytes of prelaunch.err :
/bin/bash: line 1: 25051 Aborted /usr/java/jdk1.8.0_232-cloudera/bin/java -server -Xmx4096m '-XX:+IgnoreUnrecognizedVMOptions' '--add-opens=java.base/java.lang=ALL-UNNAMED' '--add-opens=java.base/java.lang.invoke=ALL-UNNAMED' '--add-opens=java.base/java.lang.reflect=ALL-UNNAMED' '--add-opens=java.base/java.io=ALL-UNNAMED' '--add-opens=java.base/java.net=ALL-UNNAMED' '--add-opens=java.base/java.nio=ALL-UNNAMED' '--add-opens=java.base/java.util=ALL-UNNAMED' '--add-opens=java.base/java.util.concurrent=ALL-UNNAMED' '--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED' '--add-opens=java.base/sun.nio.ch=ALL-UNNAMED' '--add-opens=java.base/sun.nio.cs=ALL-UNNAMED' '--add-opens=java.base/sun.security.action=ALL-UNNAMED' '--add-opens=java.base/sun.util.calendar=ALL-UNNAMED' '--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED' -Djava.io.tmpdir=/data2/yarn2/nm/usercache/hive/appcache/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/tmp '-Dspark.network.timeout=600000' '-Dspark.rpc.askTimeout=1000' '-Dspark.authenticate=false' '-Dspark.network.crypto.enabled=false' '-Dspark.driver.port=35562' '-Dspark.shuffle.service.port=7337' '-Dspark.ui.port=0' -Dspark.yarn.app.container.log.dir=/data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034 -XX:OnOutOfMemoryError='kill %p' org.apache.spark.executor.YarnCoarseGrainedExecutorBackend --driver-url spark://CoarseGrainedScheduler@dbdz68:35562 --executor-id 26 --hostname dbdz68 --cores 8 --app-id application_1684488042345_3070 --resourceProfileId 0 > /data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/stdout 2> /data3/yarn2/container-logs/application_1684488042345_3070/container_e05_1684488042345_3070_01_000034/stderr
Last 4096 bytes of stderr :
Using Spark's default log4j profile: org/apache/spark/log4j2-defaults.properties
OpenJDK 64-Bit Server VM warning: You have loaded library /data3/yarn2/nm/usercache/hive/appcache/application_1684488042345_3070/gluten-7eabdaeb-81cc-4668-8833-ff9abca4e26b/jni/87b7d890-af1a-4cc8-8716-8d5959e1723c/gluten-3672577289053489304/libhdfs3.so.1 which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
I20230621 11:21:04.075465 25792 VeloxInitializer.cc:91] STARTUP: VeloxInitializer conf = {
{spark.hadoop.input.connect.timeout, 180000}
{spark.gluten.sql.columnar.backend.velox.IOThreads, 0}
{spark.hadoop.fs.s3a.endpoint, localhost:9000}
{spark.gluten.sql.columnar.backend.velox.SplitPreloadPerDriver, 2}
{spark.hadoop.fs.s3a.access.key, }
{spark.gluten.memory.task.offHeap.size.in.bytes, 1342177280}
{spark.hadoop.input.write.timeout, 180000}
{spark.hadoop.fs.s3a.path.style.access, true}
{spark.hadoop.fs.s3a.use.instance.credentials, false}
{spark.hadoop.fs.s3a.connection.ssl.enabled, false}
{spark.memory.offHeap.enabled, true}
{spark.hadoop.fs.s3a.secret.key, }
{spark.hadoop.input.read.timeout, 180000}
{spark.hadoop.dfs.client.log.severity, INFO}
{spark.gluten.memory.offHeap.size.in.bytes, 10737418240}
}
memPoolOptions = { alignment:64, capacity:7680M, trackUsage:1 }
spillThreshold = 4608M
E20230621 11:21:06.801776 25790 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
E20230621 11:21:07.282449 25791 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
E20230621 11:21:07.311520 25793 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2672)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2608)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2607)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2607)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1182)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1182)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2860)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2802)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2791)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) (state=,code=0)
Closing: 0: jdbc:hive2://dbdz68:10099/prestat;password=root;principal=hive/dbdz68@CLOUDERA;
[INFO] 2023-06-21 11:21:08.200 +0800 - FINALIZE_SESSION
Is this problem solved, I get an error every time I execute this sql? @tianyouyangying select bdpscheduletaskid, cast( avg( ( unix_timestamp(finishtimestr)- unix_timestamp(jobstarttimestr) ) ) as string ) as timecost, cast( avg(mem_value) as string ) as men_vale, cast( avg(cpu_value) as string ) as cpu_value, max(jobstarttimestr) as jobstarttimestr, max(finishtimestr) as finishtimestr from ods_jobdiagnose.ods_task_consumption_list where ymd >= '20230710' and ymd <= '20230720' and finalstatus = 'SUCCEEDED' group by bdpscheduletaskid having count(distinct ymd)= 11 and count(ymd)= 11 and min( substr(jobstarttimestr, 0, 10) ) = '2023-07-10' and max( substr(finishtimestr, 0, 10) ) = '2023-07-20' and min(apptype)= 'SPARK' and max(apptype)= 'SPARK';
SLF4J: See https://www.slf4j.org/codes.html#ignoredBindings for an explanation.
E20230728 16:42:42.203538 147019 Exceptions.h:68] Line: ../.././velox/common/memory/HashStringAllocator.h:184, Function:allocate, Expression: !currentHeader_ Do not call allocate() when a write is in progress, Source: RUNTIME, ErrorCode: INVALID_STATE
java.lang.RuntimeException: Exception: VeloxRuntimeError
Error Source: RUNTIME
Error Code: INVALID_STATE
Reason: Do not call allocate() when a write is in progress
Retriable: False
Expression: !currentHeader_
Function: allocate
File: ../.././velox/common/memory/HashStringAllocator.h
Line: 184
Stack trace:
# 0 _ZN8facebook5velox7process10StackTraceC1Ei
# 1 _ZN8facebook5velox14VeloxExceptionC1EPKcmS3_St17basic_string_viewIcSt11char_traitsIcEES7_S7_S7_bNS1_4TypeES7_
# 2 _ZN8facebook5velox6detail14veloxCheckFailINS0_17VeloxRuntimeErrorEPKcEEvRKNS1_18VeloxCheckFailArgsET0_
# 3 _ZN8facebook5velox9aggregate22SingleValueAccumulator5writeEPKNS0_10BaseVectorEiPNS0_19HashStringAllocatorE
# 4 _ZN8facebook5velox9aggregate9prestosql12_GLOBAL__N_122NonNumericMaxAggregate11addRawInputEPPcRKNS0_17SelectivityVectorERKSt6vectorISt10shared_ptrINS0_10BaseVectorEESaISD_EEb
# 5 _ZN8facebook5velox4exec11GroupingSet21addInputForActiveRowsERKSt10shared_ptrINS0_9RowVectorEEb
# 6 _ZN8facebook5velox4exec11GroupingSet21addInputForActiveRowsERKSt10shared_ptrINS0_9RowVectorEEb
# 7 _ZN8facebook5velox4exec11GroupingSet8addInputERKSt10shared_ptrINS0_9RowVectorEEb
# 8 _ZN8facebook5velox4exec15HashAggregation8addInputESt10shared_ptrINS0_9RowVectorEE
# 9 _ZN8facebook5velox4exec6Driver11runInternalERSt10shared_ptrIS2_ERS3_INS1_13BlockingStateEERS3_INS0_9RowVectorEE
# 10 _ZN8facebook5velox4exec6Driver4nextERSt10shared_ptrINS1_13BlockingStateEE
# 11 _ZN8facebook5velox4exec4Task4nextEPN5folly10SemiFutureINS3_4UnitEEE
# 12 _ZN6gluten24WholeStageResultIterator4nextEv
# 13 Java_io_glutenproject_vectorized_ColumnarBatchOutIterator_nativeHasNext
# 14 0x00007fc0e1017a14
at io.glutenproject.vectorized.ColumnarBatchOutIterator.nativeHasNext(Native Method)
at io.glutenproject.vectorized.ColumnarBatchOutIterator.hasNextInternal(ColumnarBatchOutIterator.java:47)
at io.glutenproject.vectorized.GeneralOutIterator.hasNext(GeneralOutIterator.java:37)
at io.glutenproject.backendsapi.velox.IteratorHandler$$anon$3.hasNext(IteratorHandler.scala:298)
at io.glutenproject.vectorized.CloseableColumnBatchIterator.hasNext(CloseableColumnBatchIterator.scala:41)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
at org.apache.spark.writer.gluten.uniffle.writer.NativeShuffleWriter.writeImpl(NativeShuffleWriter.scala:98)
at org.apache.spark.writer.gluten.uniffle.writer.NativeShuffleWriter.write(NativeShuffleWriter.scala:80)
at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)```
hadoop:cdp7.x error info: Error: Error operating EXECUTE_STATEMENT: org.apache.spark.SparkException: Job aborted. at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:651) at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:278) at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:98) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:109) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:169) at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:95) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:98) at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:94) at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:584) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:176) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560) at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:81) at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79) at org.apache.spark.sql.Dataset.(Dataset.scala:220)
at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:100)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:97)
at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:622)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:617)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.$anonfun$executeStatement$1(ExecuteStatement.scala:80)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.kyuubi.engine.spark.operation.SparkOperation.withLocalProperties(SparkOperation.scala:88)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement.org$apache$kyuubi$engine$spark$operation$ExecuteStatement$$executeStatement(ExecuteStatement.scala:74)
at org.apache.kyuubi.engine.spark.operation.ExecuteStatement$$anon$1.run(ExecuteStatement.scala:106)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 33 in stage 354.0 failed 4 times, most recent failure: Lost task 33.3 in stage 354.0 (TID 37135) (dbdz84 executor 42): java.lang.RuntimeException: Exception: VeloxRuntimeError
Error Source: RUNTIME
Error Code: INVALIDSTATE
Reason: Do not call allocate() when a write is in progress
Retriable: False
Expression: !currentHeader
Function: allocate
File: ../.././velox/common/memory/HashStringAllocator.h
Line: 184
Stack trace:
0 _ZN8facebook5velox7process10StackTraceC1Ei