Open yifeim opened 6 years ago
@eric-haibin-lin could you help to add label feature request and sparse? Thanks!
@yifeim Working on the backward for square(rsp) now.
@haojin2 Thanks a lot! Please let me know when it is done and I will be happy to test it out with the previous examples.
Description
Square on row_sparse throws a storage fallback warning message. Sparse sum with keepdims also throws a similar warning message. While I need both functions to write factorization machines, it appears that there is an example that circumvents both obstacles with an internal function:
https://github.com/apache/incubator-mxnet/blob/14206978f461364c53aaf1c787e2f268e2a94b00/example/sparse/factorization_machine/model.py#L38
Still, it would be nice to expose these functionalities separately for general usability.
Environment info (Required)
----------Python Info---------- Version : 3.6.4 Compiler : GCC 7.2.0 Build : ('default', 'Mar 13 2018 01:15:57') Arch : ('64bit', '') ------------Pip Info----------- Version : 9.0.1 Directory : /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/pip ----------MXNet Info----------- Version : 1.1.0 Directory : /home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet Commit Hash : 07a83a0325a3d782513a04f47d711710972cb144 ----------System Info---------- Platform : Linux-4.4.0-1055-aws-x86_64-with-debian-stretch-sid system : Linux node : ip-172-31-35-190 release : 4.4.0-1055-aws version : #64-Ubuntu SMP Thu Apr 5 17:06:36 UTC 2018 ----------Hardware Info---------- machine : x86_64 processor : x86_64 ----------Network Test---------- Setting timeout: 10 Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0017 sec, LOAD: 0.5422 sec. Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.2314 sec, LOAD: 0.0510 sec. Timing for Gluon Tutorial(cn): https://zh.gluon.ai, DNS: 0.0396 sec, LOAD: 0.1310 sec. Timing for FashionMNIST: https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, DNS: 0.0176 sec, LOAD: 0.0979 sec. Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0023 sec, LOAD: 0.6010 sec. Timing for Conda: https://repo.continuum.io/pkgs/free/, DNS: 0.0096 sec, LOAD: 0.0716 sec.
Package used (Python/R/Scala/Julia): I am using python.
Error Message:
Minimum reproducible example
This is a similar factorization machines model
Steps to reproduce
What have you tried to solve it?
https://github.com/apache/incubator-mxnet/blob/14206978f461364c53aaf1c787e2f268e2a94b00/example/sparse/factorization_machine/model.py#L38