We have a high volume streaming service which works most of the time . But off late we have been observing that some of the parquet files written out by write flow are getting corrupted. This is manifested in our reading flow with the following exception
Writer version - 1.6.0 , Reader version - 1.7.0
Caused by: java.lang.RuntimeException: hdfs://Ingest/ingest/jobs/2017-11-30/00-05/part4139 is not a Parquet file. expected magic number at tail [80, 65, 82, 49] but found [-28, -126, 1, 1]
at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:422)
at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:385)
at org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:157)
at org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
at org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.(SqlNewHadoopRDD.scala:180)
at org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:126)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)```
After looking at the code , i can see that one of the possible causes is/are
1] footer not being serialized in the writer due to end not being called
but we are not seeing any exceptions on the writer.
2] data size - does data size has impact ? There will be cases when row group sizes will be huge as it is activity data of a user
We are using default parquet block size and hdfs block size . Other than upgrading to the latest version and re-test , what are the options we have to debug a issue like this
We have a high volume streaming service which works most of the time . But off late we have been observing that some of the parquet files written out by write flow are getting corrupted. This is manifested in our reading flow with the following exception
Writer version - 1.6.0 , Reader version - 1.7.0 Caused by: java.lang.RuntimeException: hdfs://Ingest/ingest/jobs/2017-11-30/00-05/part4139 is not a Parquet file. expected magic number at tail [80, 65, 82, 49] but found [-28, -126, 1, 1] at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:422) at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:385) at org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:157) at org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140) at org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.(SqlNewHadoopRDD.scala:180)
at org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:126)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)```
After looking at the code , i can see that one of the possible causes is/are 1] footer not being serialized in the writer due to end not being called but we are not seeing any exceptions on the writer. 2] data size - does data size has impact ? There will be cases when row group sizes will be huge as it is activity data of a user
We are using default parquet block size and hdfs block size . Other than upgrading to the latest version and re-test , what are the options we have to debug a issue like this
Reporter: venkata yerubandi
Note: This issue was originally created as PARQUET-1176. Please see the migration documentation for further details.