apache / superset

Apache Superset is a Data Visualization and Data Exploration Platform
https://superset.apache.org/
Apache License 2.0
63.16k stars 13.99k forks source link

Wrong visualization of missing values in radar charts #30270

Open FrankTT3D opened 2 months ago

FrankTT3D commented 2 months ago

Screenshot

image

Description

If data contains a value of NULL, the chart visualizes as if the data has a value of 0. In the example above, a doctor cannot differentiate whether a patient did not answer a question, or checked an answer that would score to a 0 value.

Design input

[design:suggest] Other tools creating radar charts do not draw a line to the axis containing the missing data point in case the data point is missing - which is an intuitive visualization of the data. Somewhat problematic is the visualization of an axis, when it's left and right adjacent axis are both containing NULL values. In this case, I suggest to draw a point only.

dosubot[bot] commented 2 months ago

Hey @FrankTT3D! I'm here to help you with any bugs, questions, or contributions. Let's tackle this together!

To address the issue of radar charts incorrectly visualizing NULL values as 0, you need to modify the transformProps function to handle NULL values properly. Specifically, ensure that NULL values are not included in the value array for each data point. Here’s how you can do it:

data.forEach(datum => {
  const joinedName = extractGroupbyLabel({
    datum,
    groupby: groupbyLabels,
    coltypeMapping,
    timeFormatter: getTimeFormatter(dateFormat),
  });
  // map(joined_name: [columnLabel_1, columnLabel_2, ...])
  columnsLabelMap.set(
    joinedName,
    groupbyLabels.map(col => datum[col] as string),
  );

  // put max value of series into metricLabelAndMaxValueMap
  // eslint-disable-next-line no-restricted-syntax
  for (const [metricLabel, value] of Object.entries(datum)) {
    if (metricLabelAndMaxValueMap.has(metricLabel)) {
      metricLabelAndMaxValueMap.set(
        metricLabel,
        Math.max(
          value as number,
          ensureIsInt(
            metricLabelAndMaxValueMap.get(metricLabel),
            Number.MIN_SAFE_INTEGER,
          ),
        ),
      );
    } else {
      metricLabelAndMaxValueMap.set(metricLabel, value as number);
    }
  }

  const isFiltered =
    filterState.selectedValues &&
    !filterState.selectedValues.includes(joinedName);

  // generate transformedData
  transformedData.push({
    value: metricLabels.map(metricLabel => datum[metricLabel] !== null ? datum[metricLabel] : undefined),
    name: joinedName,
    itemStyle: {
      color: colorFn(joinedName, sliceId, colorScheme),
      opacity: isFiltered
        ? OpacityEnum.Transparent
        : OpacityEnum.NonTransparent,
    },
    lineStyle: {
      opacity: isFiltered
        ? OpacityEnum.SemiTransparent
        : OpacityEnum.NonTransparent,
    },
    label: {
      show: showLabels,
      position: labelPosition,
      formatter,
    },
  } as RadarSeriesDataItemOption);
});

This modification ensures that NULL values are replaced with undefined, preventing the radar chart from drawing a line to the axis containing the missing data point [1].

Additionally, there is an existing test for radar charts that include NULL values, which can help ensure your changes work correctly:

def test_pivot_df_complex_null_values():
    """
    Pivot table when a column, rows and 2 metrics are selected.
    """
    df = pd.DataFrame.from_dict(
        {
            "state": {
                0: None,
                1: None,
                2: None,
                3: None,
                4: None,
                5: None,
                6: None,
                7: None,
                8: None,
                9: None,
                10: None,
                11: None,
            },
            "gender": {
                0: "girl",
                1: "boy",
                2: "girl",
                3: "girl",
                4: "girl",
                5: "girl",
                6: "boy",
                7: "girl",
                8: "girl",
                9: "boy",
                10: "boy",
                11: "girl",
            },
            "name": {
                0: "Amy",
                1: "Edward",
                2: "Sophia",
                3: "Amy",
                4: "Cindy",
                5: "Dawn",
                6: "Edward",
                7: "Sophia",
                8: "Dawn",
                9: "Tony",
                10: "Tony",
                11: "Cindy",
            },
            "SUM(num)": {
                0: 45426,
                1: 31290,
                2: 18859,
                3: 14740,
                4: 14149,
                5: 11403,
                6: 9395,
                7: 7181,
                8: 5089,
                9: 3765,
                10: 2673,
                11: 1218,
            },
            "MAX(num)": {
                0: 2227,
                1: 1280,
                2: 2588,
                3: 854,
                4: 842,
                5: 1157,
                6: 389,
                7: 1187,
                8: 461,
                9: 598,
                10: 247,
                11: 217,
            },
        }
    )
    assert (
        df.to_markdown()
        == """

[2]

To continue talking to Dosu, mention @dosu.