apache / tvm

Open deep learning compiler stack for cpu, gpu and specialized accelerators
https://tvm.apache.org/
Apache License 2.0
11.77k stars 3.47k forks source link

No speed increase when converting Insightface (MXNET) model to TVM #3912

Closed cyrusbehr closed 5 years ago

cyrusbehr commented 5 years ago

I am trying to convert an MXNET model to TVM in order to improve the inference speed. I am able to convert it successfully, however I do not experience the improvements in speed which are advertised on this page

I have followed the tutorial here, but I will go through the steps I took.

I first downloaded the Insightface model LResNet100E-IR,ArcFace@ms1m-refine-v2 which can be found here. Note that I am using the same model from the TVM benchmark.

Next, I use the following python script to convert the model to the TVM compatible models Note that when I run the command llc --version I get the following output (which is why I set the target to skylake)

LLVM (http://llvm.org/):
  LLVM version 6.0.0

  Optimized build.
  Default target: x86_64-pc-linux-gnu
  Host CPU: skylake

Python conversion script

from tvm.contrib import graph_runtime
import mxnet as mx
from mxnet import ndarray as nd
import nnvm.compiler
import nnvm.testing
import tvm

prefix,epoch = "/home/nchafni/Cyrus/models/faceDetection/Insightface/model-r100-ii/model",0
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
opt_level = 3

shape_dict = {'data': (1, 3, 112, 112)}
target = tvm.target.create("llvm -mcpu=skylake")
#target = tvm.target.intel_graphics()
nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(sym, arg_params, aux_params)
with nnvm.compiler.build_config(opt_level=opt_level):
   graph, lib, params = nnvm.compiler.build(nnvm_sym, target, shape_dict, params=nnvm_params)
lib.export_library("./deploy_lib.so")
print('lib export succeefully')
with open("./deploy_graph.json", "w") as fo:
   fo.write(graph.json())
with open("./deploy_param.params", "wb") as fo:
   fo.write(nnvm.compiler.save_param_dict(params))

When I run the script, I get the following warning messages:

Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 3, 112, 112, 'float32'), (64, 3, 3, 3, 'float32'), (1, 1), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 64, 112, 112, 'float32'), (64, 64, 3, 3, 'float32'), (1, 1), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 64, 112, 112, 'float32'), (64, 64, 3, 3, 'float32'), (2, 2), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 64, 112, 112, 'float32'), (64, 64, 1, 1, 'float32'), (2, 2), (0, 0), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 64, 56, 56, 'float32'), (128, 64, 3, 3, 'float32'), (1, 1), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 128, 56, 56, 'float32'), (128, 128, 3, 3, 'float32'), (2, 2), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 128, 28, 28, 'float32'), (256, 128, 3, 3, 'float32'), (1, 1), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 256, 28, 28, 'float32'), (256, 256, 3, 3, 'float32'), (2, 2), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 256, 14, 14, 'float32'), (512, 256, 3, 3, 'float32'), (1, 1), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
Cannot find config for target=llvm -mcpu=skylake, workload=('conv2d', (1, 512, 14, 14, 'float32'), (512, 512, 3, 3, 'float32'), (2, 2), (1, 1), (1, 1), 'NCHW', 'float32'). A fallback configuration is used, which may bring great performance regression.
WARNING:autotvm:Cannot find config for target=llvm -mcpu=skylake, workload=('dense', (1, 25088, 'float32'), (512, 25088, 'float32'), (512, 'float32'), 0). A fallback configuration is used, which may bring great performance regression.
lib export succeefully

but it ultimately exports the models successfully.

Next, I import the the converted models and deploy_lib.so into my C++ project. I am using the following code. The majority of the code is taken from the example on this page

#include <chrono>
#include <iostream>
#include <fstream>
#include "opencv2/opencv.hpp"
#include "tvm/runtime/module.h"
#include "tvm/runtime/registry.h"
#include "tvm/runtime/packed_func.h"

typedef std::chrono::high_resolution_clock Clock;

class FR_MFN_Deploy{
private:
    void * handle;

public:
    FR_MFN_Deploy(std::string modelFolder)
    {
        tvm::runtime::Module mod_syslib = tvm::runtime::Module::LoadFromFile("/home/nchafni/Cyrus/tvm_test/lib/deploy_lib.so");
        //load graph
        std::string modelPath = modelFolder + "/deploy_graph.json";
        std::ifstream json_in(modelPath);
        std::string json_data((std::istreambuf_iterator<char>(json_in)), std::istreambuf_iterator<char>());
        json_in.close();
        int device_type = kDLCPU;
        int device_id = 0;
        // get global function module for graph runtime
        tvm::runtime::Module mod = (*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(json_data, mod_syslib, device_type, device_id);
        this->handle = new tvm::runtime::Module(mod);
        //load param
        std::ifstream params_in(modelFolder + "/deploy_param.params", std::ios::binary);
        std::string params_data((std::istreambuf_iterator<char>(params_in)), std::istreambuf_iterator<char>());
        params_in.close();
        TVMByteArray params_arr;
        params_arr.data = params_data.c_str();
        params_arr.size = params_data.length();
        tvm::runtime::PackedFunc load_params = mod.GetFunction("load_params");
        load_params(params_arr);
    }

    cv::Mat forward(cv::Mat inputImageAligned)
    {
        //mobilefacnet preprocess has been written in graph.
        cv::Mat tensor = cv::dnn::blobFromImage(inputImageAligned,1.0,cv::Size(112,112),cv::Scalar(0,0,0),true);
        //convert uint8 to float32 and convert to RGB via opencv dnn function
        DLTensor* input;
        constexpr int dtype_code = kDLFloat;
        constexpr int dtype_bits = 32;
        constexpr int dtype_lanes = 1;
        constexpr int device_type = kDLCPU;
        constexpr int device_id = 0;
        constexpr int in_ndim = 4;
        const int64_t in_shape[in_ndim] = {1, 3, 112, 112};
        TVMArrayAlloc(in_shape, in_ndim, dtype_code, dtype_bits, dtype_lanes, device_type, device_id, &input);//
        TVMArrayCopyFromBytes(input,tensor.data,112*3*112*4);
        tvm::runtime::Module* mod = (tvm::runtime::Module*)handle;
        tvm::runtime::PackedFunc set_input = mod->GetFunction("set_input");
        set_input("data", input);
        tvm::runtime::PackedFunc run = mod->GetFunction("run");
        run();
        tvm::runtime::PackedFunc get_output = mod->GetFunction("get_output");
        tvm::runtime::NDArray res = get_output(0);
        cv::Mat vector(512,1,CV_32F);
        memcpy(vector.data,res->data,512*4);
        cv::Mat _l2;
        cv::multiply(vector,vector,_l2);
        float l2 =  cv::sqrt(cv::sum(_l2).val[0]);
        vector = vector / l2;
        TVMArrayFree(input);
        return vector;
    }

};

inline float CosineDistance(const cv::Mat &v1,const cv::Mat &v2){
    return static_cast<float>(v1.dot(v2));
}

cv::Mat getTemplate(const std::string& imagePath, FR_MFN_Deploy& deploy) {
    cv::Mat data = cv::imread(imagePath);
    auto time_1 = Clock::now();
    cv::Mat out = deploy.forward(data);
    auto time_2 = Clock::now();
    std::cout << std::to_string(std::chrono::duration_cast<std::chrono::milliseconds>(time_2 - time_1).count()) << std::endl;
    return out;
}

int main() {
    std::cout << "Loading the model" << std::endl;
    FR_MFN_Deploy deploy("../models");
    std::cout << "Loaded model" << std::endl;

    // Different People
//    std::vector<std::string> imagePaths = {
//            "../images/chip17.jpg",
//            "../images/chip18.jpg",
//            "../images/chip19.jpg",
//            "../images/chip20.jpg",
//            "../images/chip21.jpg",
//            "../images/chip22.jpg",
//            "../images/chip23.jpg",
//    };

// Same person
    std::vector<std::string> imagePaths = {
            "../images/chip1.jpg",
            "../images/chip2.jpg",
            "../images/chip3.jpg",
            "../images/chip4.jpg",
            "../images/chip5.jpg",
            "../images/chip6.jpg",
            "../images/chip7.jpg",
            "../images/chip8.jpg",
            "../images/chip9.jpg",
            "../images/chip10.jpg",
            "../images/chip11.jpg",
            "../images/chip12.jpg",
            "../images/chip13.jpg",
            "../images/chip14.jpg",
            "../images/chip15.jpg",
            "../images/chip16.jpg",
    };

    std::vector<cv::Mat> res;
    std::vector<float> scoresVec;

    for (const auto& path: imagePaths) {
        res.emplace_back(getTemplate(path, deploy));
    }

    for (size_t i = 0; i < res.size(); i++) {
        for (size_t k = i + 1; k < res.size(); k++) {
            auto score = CosineDistance(res[i],res[k]);
            if (score < 0) {
                score = 0;
            }
            scoresVec.emplace_back(score);
        }
    }

    double total = 0;
    for (int i = 0; i < scoresVec.size(); ++i) {
        total +=  scoresVec[i];
        std::cout << scoresVec[i] << std::endl;
    }

    std::cout << "Total score: " << total << "\n";

    return 0;
}

Note that the images I am provided are pre-aligned and cropped to 112x112.

On average, the inference takes 360ms, which is roughly the same time it takes to perform inference using MXNET (C++, MKLDNN). I was expecting to see a significant decrease in inference time.

I am not sure if the issue has to do with the warnings during the conversion? I followed the conversion tutorial exactly and the tutorial did not mention needing to fine tune the model or anything.

Here is the output of cat /proc/cpuinfo to understand what hardward I am running the benchmark on:

processor   : 0
vendor_id   : GenuineIntel
cpu family  : 6
model       : 158
model name  : Intel(R) Core(TM) i5-7500T CPU @ 2.70GHz
stepping    : 9
microcode   : 0xb4
cpu MHz     : 1407.008
cache size  : 6144 KB
physical id : 0
siblings    : 4
core id     : 0
cpu cores   : 4
apicid      : 0
initial apicid  : 0
fpu     : yes
fpu_exception   : yes
cpuid level : 22
wp      : yes
flags       : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d
bugs        : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs
bogomips    : 5424.00
clflush size    : 64
cache_alignment : 64
address sizes   : 39 bits physical, 48 bits virtual
power management:
tqchen commented 5 years ago

Please open a new thread on https://discuss.tvm.ai/ for related discussions

cyrusbehr commented 5 years ago

Hi @tqchen I made a post on https://discuss.tvm.ai/ but have been waiting for approval of my post from a staff member for over 2 days. Can you kindly approve my post. I am keen to get an answer.

zy2008cn commented 5 years ago

Have your performance improved? I encounter the same problem as yours. @cyrusbehr