apple / coremltools

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.
https://coremltools.readme.io
BSD 3-Clause "New" or "Revised" License
4.45k stars 647 forks source link

Convert SSD MobileNet V2 to CoreML #1542

Open manozd opened 2 years ago

manozd commented 2 years ago

❓Question

I have an SSD MobileNet V2 model trained with Tensorflow Object detection API. How can I convert it to coreml? I tried the following steps but it did not work:

I got an error: NotImplementedError: Expected model format: [SavedModel | [concrete_function] | tf.keras.Model | .h5], got <tensorflow.python.saved_model.load.Loader._recreate_base_user_object.<locals>._UserObject object at 0x7fab1a41cd90>

ubuntu 18 python version 3.7.6 Tensorflow version 2.8.2 coremltools version 5.2

TobyRoseman commented 2 years ago

What is the output of print(type(model))?

Relevant code section can be found here.

manozd commented 2 years ago

What is the output of print(type(model))?

Relevant code section can be found here.

It is the same as in error text above: <class 'tensorflow.python.saved_model.load.Loader._recreate_base_user_object.<locals>._UserObject'>

TobyRoseman commented 2 years ago

Can you give us a minimal example to reproduce the problem?

manozd commented 2 years ago

saved_model.zip

This is a model that i got after converting from checkpoints to saved_model using this. I also tried to convert it to tflite and its alright, so it is not problem with the model itself.

TobyRoseman commented 2 years ago

Loading an untrusted TensorFlow model is not secure. If you can give me a minimal example (i.e. something I just can copy and paste), I'll take a look. You could also dig into the relevant section of the code that I have already shared.

manozd commented 2 years ago

Loading an untrusted TensorFlow model is not secure. If you can give me a minimal example (i.e. something I just can copy and paste), I'll take a look. You could also dig into the relevant section of the code that I have already shared.

Download SSD MobileNet v2 320x320 model from trusted source

Run the following code:

import coremltools as ct
import tensorflow as tf

model = tf.saved_model.load("......./saved_model")
mlmodel = ct.convert(model, source="tensorflow")
manozd commented 2 years ago

I changed the code in function _get_concrete_functions_and_graph_def to following:

    def _get_concrete_functions_and_graph_def(self):
        saved_model = self.model
        sv = saved_model.signatures.values()
        cfs = sv if isinstance(sv, list) else list(sv)
        graph_def = self._graph_def_from_concrete_fn(cfs)

        return cfs, graph_def

And I got this error: Screenshot from 2022-06-29 14-14-47

TobyRoseman commented 2 years ago

I'm not sure what tf.saved_model.load is returning but looking at the dir of that object it certainly doesn't look like a TensorFlow model, i.e. doesn't seem like you can get predictions from it.

You need to pass ct.convert an actual TensorFlow model.

You said you managed to convert it to a tflite model, you could try converting that to Core ML. Is there anyway you can get a normal TensorFlow Model?

freedomtan commented 2 years ago

The ssd_mobilenet_v2_320x320_coco17_tpu-8/saved_model directory is a valid TensorFlow v2 (2.x) saved_model. We can get concrete_function from the loaded object easily.

If coremltools==6.0b1 is used

import tensorflow as tf
import coremltools as ct

m = tf.saved_model.load("/tmp/ssd_mobilenet_v2_320x320_coco17_tpu-8/saved_model")
f = m.__call__.get_concrete_function(tf.TensorSpec((1,320,320,3), tf.uint8))

input = ct.ImageType(name='input_tensor', shape=(1, 320, 320, 3))
ct.convert([f], "tensorflow", inputs=[input])

We can pass NonMaximumSuppressionV5 problem and get

Running TensorFlow Graph Passes: 100%|█████████████████████████████████████████████████████████████| 6/6 [00:01<00:00,  3.18 passes/s]
Converting TF Frontend ==> MIL Ops:  97%|████████████████████████████████████████████████████▎ | 4528/4671 [00:21<00:00, 210.51 ops/s]
Traceback (most recent call last):
  File "foobar.py", line 8, in <module>
    ct.convert([f], "tensorflow", inputs=[input])
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/_converters_entry.py", line 426, in convert
    mlmodel = mil_convert(
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 182, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 209, in _mil_convert
    proto, mil_program = mil_convert_to_proto(
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 272, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 94, in __call__
    return tf2_loader.load()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/load.py", line 86, in load
    program = self._program_from_tf_ssa()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow2/load.py", line 200, in _program_from_tf_ssa
    return converter.convert()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 473, in convert
    self.convert_main_graph(prog, graph)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 396, in convert_main_graph
    outputs = convert_graph(self.context, graph, self.output_names)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/convert_utils.py", line 189, in convert_graph
    add_op(context, node)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/ops.py", line 1391, in Cast
    raise NotImplementedError(
NotImplementedError: Cast: Provided destination type bool not supported.

if we fix the Cast with destination type bool issue, we have another problem

Running TensorFlow Graph Passes: 100%|█████████████████████████████████████████████████████████████| 6/6 [00:01<00:00,  3.15 passes/s]
Converting TF Frontend ==> MIL Ops:  97%|████████████████████████████████████████████████████▌ | 4551/4671 [00:22<00:00, 131.07 ops/s]WARNING:root:Saving value type of int64 into a builtin type of int32, might lose precision!
Converting TF Frontend ==> MIL Ops:  98%|████████████████████████████████████████████████████▋ | 4559/4671 [00:22<00:00, 198.34 ops/s]
Traceback (most recent call last):
  File "foobar.py", line 8, in <module>
    ct.convert([f], "tensorflow", inputs=[input])
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/_converters_entry.py", line 426, in convert
    mlmodel = mil_convert(
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 182, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 209, in _mil_convert
    proto, mil_program = mil_convert_to_proto(
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 272, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/converter.py", line 94, in __call__
    return tf2_loader.load()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/load.py", line 86, in load
    program = self._program_from_tf_ssa()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow2/load.py", line 200, in _program_from_tf_ssa
    return converter.convert()
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 473, in convert
    self.convert_main_graph(prog, graph)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 396, in convert_main_graph
    outputs = convert_graph(self.context, graph, self.output_names)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/convert_utils.py", line 189, in convert_graph
    add_op(context, node)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/frontend/tensorflow/ops.py", line 1948, in Select
    x = mb.select(cond=cond, a=a, b=b, name=node.name)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/ops/registry.py", line 63, in add_op
    return cls._add_op(op_cls, **kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/builder.py", line 175, in _add_op
    new_op = op_cls(**kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/ops/defs/control_flow.py", line 299, in __init__
    super().__init__(**kwargs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/operation.py", line 170, in __init__
    self._validate_and_set_inputs(input_kv)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/operation.py", line 455, in _validate_and_set_inputs
    self.input_spec.validate_inputs(self.name, self.op_type, input_kvs)
  File "/Users/freedom/tf-master/lib/python3.8/site-packages/coremltools/converters/mil/mil/input_type.py", line 128, in validate_inputs
    raise ValueError(msg.format(name, var.name, input_type.type_str,
ValueError: Op "StatefulPartitionedCall/Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/Select_91" (op_type: select) Input cond="StatefulPartitionedCall/Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/Greater" expects bool tensor but got bool

It seems to be some kind of tensor vs. scalar or broadcasting problem.

mbaharan commented 2 years ago

I have also installed coremltools==6.0b1 and received

Op "StatefulPartitionedCall/StatefulPartitionedCall/StatefulPartitionedCall/linspace_3/SelectV2_1" (op_type: select) Input cond="StatefulPartitionedCall/StatefulPartitionedCall/StatefulPartitionedCall/linspace_3/GreaterEqual" expects bool tensor but got bool 

for a different model.

freedomtan commented 2 years ago

FYR, currently, it seems if we want to have a whole TensorFlow SSD model (including NMS) converted and make it work in Xcode model preview, we have to do something like @hollance's "MobileNetV2 + SSDLite with Core ML". See my example of converting MobileDet, here.

Jeetendra-Shakya commented 2 years ago

Hi Toby, I tried to convert from ssdmobilenet to coreml using tfcoreml as well as coremltool but no luck. Can you please check my attachment and suggest what might be a problem? It is working fine when i convert to tflite for android devices. Thanks. SSD mobile net to core ml coversion.txt

TobyRoseman commented 2 years ago

@Jeetendra-Shakya - as I said earlier in this very issue loading an untrusted TensorFlow model is insecure.

Can someone please do some investigation and come up with a minimal example to reproduce the problem?

Jeetendra-Shakya commented 2 years ago

Hi Toby, Sorry I didn't understand what do you mean by "loading an untrusted TensorFlow model is insecure". It's my custom test model which is working fine when I created tflite model. I already sent you all steps i did in attachment if you want i can share you my model file as well. Please suggest.

apivovarov commented 2 years ago

I got NonMaxSuppressionV5 not implemented when converting TF2 SSD MobileNet v2 320x320 using coremltools 5.2 and 6.0b2

Example1 (convert saved_model dir):

import coremltools as ct
image_input = ct.ImageType(shape=(1, 320, 320, 3))
model = ct.convert("saved_model", inputs=[image_input])

Example2 (convert "serving_default" function)

import tensorflow as tf
m=tf.saved_model.load("saved_model")
f=m.signatures["serving_default"]
import coremltools as ct
image_input = ct.ImageType(shape=(1, 320, 320, 3))
model = ct.convert([f], inputs=[image_input])

Stack Trace when using version 5.2:

Converting Frontend ==> MIL Ops:  63%|███████████████████████████████████████████████████████████████████████████████████████████▉                                                     | 2847/4491 [00:04<00:02, 581.00 ops/s]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/_converters_entry.py", line 363, in convert
    debug=debug,
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 183, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 215, in _mil_convert
    **kwargs
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 273, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 95, in __call__
    return tf2_loader.load()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/load.py", line 84, in load
    program = self._program_from_tf_ssa()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow2/load.py", line 200, in _program_from_tf_ssa
    return converter.convert()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 401, in convert
    self.convert_main_graph(prog, graph)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 330, in convert_main_graph
    outputs = convert_graph(self.context, graph, self.outputs)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/convert_utils.py", line 188, in convert_graph
    raise NotImplementedError(msg)
NotImplementedError: Conversion for TF op 'NonMaxSuppressionV5' not implemented.

name: "StatefulPartitionedCall/Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/non_max_suppression_with_scores/NonMaxSuppressionV5"
op: "NonMaxSuppressionV5"

StackTrace when using version 6.0b2:

Converting TF Frontend ==> MIL Ops:  97%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▋    | 4528/4671 [00:05<00:00, 765.76 ops/s]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/_converters_entry.py", line 463, in convert
    specification_version=specification_version,
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 193, in mil_convert
    return _mil_convert(model, convert_from, convert_to, ConverterRegistry, MLModel, compute_units, **kwargs)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 225, in _mil_convert
    **kwargs
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 283, in mil_convert_to_proto
    prog = frontend_converter(model, **kwargs)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/converter.py", line 105, in __call__
    return tf2_loader.load()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/load.py", line 86, in load
    program = self._program_from_tf_ssa()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow2/load.py", line 208, in _program_from_tf_ssa
    return converter.convert()
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 475, in convert
    self.convert_main_graph(prog, graph)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/converter.py", line 398, in convert_main_graph
    outputs = convert_graph(self.context, graph, self.output_names)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/convert_utils.py", line 189, in convert_graph
    add_op(context, node)
  File "/usr/local/lib/python3.7/dist-packages/coremltools/converters/mil/frontend/tensorflow/ops.py", line 1395, in Cast
    "supported.".format(types.get_type_info(node.attr["DstT"]))
NotImplementedError: Cast: Provided destination type bool not supported.
Jeetendra-Shakya commented 2 years ago

Guys, Is this Apple official github. If there is any problem converting custom model - I couldn't find any solution in net and they don't reply in developer site too. Is it like fix on your own. Very disappoint with such service from big organisation like APPLE.