Open boluoyu opened 3 years ago
when I run GAN on my M1 Mac , I got the error :
/Users/boluoyu/WorkSpace/PycharmProjects/ai/test/wgan_gp_models.py:135 train_d * grad = t.gradient(cost, self.D.trainable_variables) /Users/boluoyu/miniforge3/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/backprop.py:1080 gradient ** flat_grad = imperative_grad.imperative_grad( /Users/boluoyu/miniforge3/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/imperative_grad.py:71 imperative_grad return pywrap_tfe.TFE_Py_TapeGradient( /Users/boluoyu/miniforge3/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/backprop.py:151 _gradient_function grad_fn = ops._gradient_registry.lookup(op_name) # pylint: disable=protected-access /Users/boluoyu/miniforge3/envs/tf2/lib/python3.8/site-packages/tensorflow/python/framework/registry.py:98 lookup raise LookupError( LookupError: gradient registry has no entry for: MLCLayerNormGrad
code:
@tf.function def train_d(self, x_real): z = random.normal((self.batch_size, 1, 1, self.z_dim)) with tf.GradientTape() as t: x_fake = self.G(z, training=True) fake_logits = self.D(x_fake, training=True) real_logits = self.D(x_real, training=True) cost = ops.d_loss_fn(fake_logits, real_logits) gp = self.gradient_penalty(partial(self.D, training=True), x_real, x_fake) cost += self.grad_penalty_weight * gp grad = t.gradient(cost, self.D.trainable_variables) #error self.d_opt.apply_gradients(zip(grad, self.D.trainable_variables)) return cost
On my Intel Mac, it works.
when I run GAN on my M1 Mac , I got the error :
code:
On my Intel Mac, it works.