Running through the tutorial: Nano 33 BLE Sense Rev2
Get Started With Machine Learning on Arduino
In arduino_tinyml_workshop.ipynb in Colab
Got data and uploaded to Colab.
Running the cells, got to the cell: Run with Test Data'
Runtime errors on these lines:
plt.plot(inputs_test, outputs_test, 'b.', label='Actual')
plt.plot(inputs_test, predictions, 'r.', label='Predicted')
Running through the tutorial: Nano 33 BLE Sense Rev2 Get Started With Machine Learning on Arduino
In arduino_tinyml_workshop.ipynb in Colab Got data and uploaded to Colab.
Running the cells, got to the cell: Run with Test Data' Runtime errors on these lines: plt.plot(inputs_test, outputs_test, 'b.', label='Actual') plt.plot(inputs_test, predictions, 'r.', label='Predicted')
Added in a few prints of data...
OUTPUT WITH ERRORS: 1/1 [==============================] - 0s 39ms/step predictions = [[1. 0. ] [0.998 0.002] [0. 1. ] [1. 0. ]] inputs_test = [[0.701375 0.520875 0.378875 ... 0.500183 0.499817 0.499878 ] [0.5895 0.461625 0.743125 ... 0.500534 0.50016775 0.50004575] [0.68425 0.4585 0.71725 ... 0.4999695 0.4987335 0.49971 ] [0.66625 0.51975 0.3385 ... 0.500885 0.500702 0.5009155 ]] actual = [[1. 0.] [1. 0.] [0. 1.] [1. 0.]]
ValueError Traceback (most recent call last) in <cell line: 12>()
10 plt.clf()
11 plt.title('Training data predicted vs actual values')
---> 12 plt.plot(inputs_test, outputs_test, 'b.', label='Actual')
13 plt.plot(inputs_test, predictions, 'r.', label='Predicted')
14 plt.show()
3 frames /usr/local/lib/python3.10/dist-packages/matplotlib/axes/_base.py in _plot_args(self, tup, kwargs, return_kwargs, ambiguous_fmt_datakey) 520 ncx, ncy = x.shape[1], y.shape[1] 521 if ncx > 1 and ncy > 1 and ncx != ncy: --> 522 raise ValueError(f"x has {ncx} columns but y has {ncy} columns") 523 if ncx == 0 or ncy == 0: 524 return []
ValueError: x has 714 columns but y has 2 columns