arthurdouillard / dytox

Dynamic Token Expansion with Continual Transformers, accepted at CVPR 2022
https://arxiv.org/abs/2111.11326
Apache License 2.0
134 stars 17 forks source link

Can you update the configuration of dytox++ for imagenet100 and imagenet1000? #23

Open wwx1474446236 opened 1 year ago

wwx1474446236 commented 1 year ago

Hi sir! There is no dytox++ configuration for imagenet100 and imagenet1000 in your code, I appended the following configuration to imagenet_dytox_plus.yaml to pretend that this is imagenet_dytox_plusplus.yaml: # SAM sam_rho: 3.0 sam_adaptive: true # ASAM sam_skip_first: true sam_mode: [tr]

and I ran the following command (using 2GPUs):

bash train.sh 0,1 --options options/data/imagenet100_10-10.yaml options/data/imagenet100_order1.yaml options/model/imagenet_dytox_plus.yaml --name dytox --data-path MY_PATH_TO_DATASET --output-basedir PATH_TO_SAVE_CHECKPOINTS --memory-size 2000

and I got the final result is : "acc": 70.64, "avg_acc": 78.93 compare with "acc": 72.46, "avg_acc": 80.76 in your Appendix Table 10, my result is much lower.

Can you update the configuration of dytox++ for imagenet100 and imagenet1000?

arthurdouillard commented 11 months ago

Your config is right, the problem came from a bug, see https://github.com/arthurdouillard/dytox/blob/main/erratum_distributed.md

You can see updated results for dytox and dytox+ in table 17 of the last version of my paper. Unfortunatly i've never re-run dytox++ because it's slower with SAM.