Open arvoelke opened 8 years ago
Resolve #64 first.
Also note there exists no analog system such that zoh discretization yields (1. - ~z) / dt
, because discrete2cont
encounters a singular matrix. However, Euler
and Tustin
discretization can yield this digital synapse:
cont2discrete(([ 1. / dt, 0.], [ 1., 1. / dt]), dt, method='euler') == (1. - ~z) / dt
cont2discrete(([ 2. / dt, 0.], [ 1., 2. / dt]), dt, method='tustin') == (1. - ~z) / dt
Adding the synapse
(1. - ~z) / dt
to a connection is an elegant / cheap way to implement differentiation.