Open tsugg opened 1 year ago
@tsugg Hi, the mesh button is actually from an old project, and I forget to remove it as it generates wrong results.
You need to use the command line to train and save stage1 mesh, which will be in obj
format.
Ahhhh well it that case I might need some help here lol.
python main.py data/nerf_synthetic/lego/ --workspace trial_syn_lego/ -O --bound 1 --scale 0.8 --dt_gamma 0 --stage 0 --lambda_tv 1e-8
Hi, I am fail to run with --gui option. Do you have any idea about the errors? I post errors at https://github.com/ashawkey/nerf2mesh/issues/82 . Thanks
Hi,
I closed my Windows related question, since I found it easier to get up and running in WSL. I'm right near the end of getting out a colorized ply. Unfortunately, there's one tiny issue I'm hoping you can help me with.
I have the gui open, I'm at stage 1, everything looks good so I click on 'mesh'. The gui says that it saved the file called ngp_stage1_1.ply, I see the terminal and it says saved to a folder called mesh_stage0, but there's no ply file by the name given in the gui.
During stage 0, I got an exported uncolorized ply in the mesh_stage0/ folder, but now there's no stage1 ply to be found anywhere. I can see it in the gui though - a colorized mesh.
Here's the log:
[INFO] Trainer: ngp_stage1 | 2023-03-09_08-25-07 | cuda | fp16 | trial_syn_lego/ [INFO] #parameters: 18513142 Namespace(path='data/nerf_synthetic/lego/', O=True, workspace='trial_syn_lego/', seed=0, stage=1, ckpt='latest', fp16=True, test=False, test_no_video=False, test_no_mesh=False, camera_traj='', data_format='nerf', train_split='train', preload=True, random_image_batch=True, downscale=1, bound=1.0, scale=0.8, offset=[0, 0, 0], mesh='', enable_cam_near_far=False, enable_cam_center=False, min_near=0.05, enable_sparse_depth=False, enable_dense_depth=False, iters=30000, lr=0.01, lr_vert=0.0001, pos_gradient_boost=1, cuda_ray=True, max_steps=1024, update_extra_interval=16, max_ray_batch=4096, grid_size=128, mark_untrained=True, dt_gamma=0.0, density_thresh=10, diffuse_step=1000, background='random', enable_offset_nerf_grad=False, num_rays=4096, adaptive_num_rays=True, num_points=262144, lambda_density=0, lambda_entropy=0, lambda_tv=1e-08, lambda_depth=0.1, lambda_specular=1e-05, wo_smooth=False, lambda_lpips=0, lambda_offsets=0.1, lambda_lap=0.001, lambda_normal=0, lambda_edgelen=0, contract=False, patch_size=1, trainable_density_grid=False, color_space='srgb', ind_dim=0, ind_num=500, mcubes_reso=512, env_reso=256, decimate_target=300000.0, mesh_visibility_culling=True, visibility_mask_dilation=5, clean_min_f=8, clean_min_d=5, ssaa=2, texture_size=4096, refine=True, refine_steps_ratio=[0.1, 0.2, 0.3, 0.4, 0.5, 0.7], refine_size=0.01, refine_decimate_ratio=0.1, refine_remesh_size=0.02, vis_pose=False, gui=True, W=1000, H=1000, radius=5, fovy=50, max_spp=1, refine_steps=[3000, 6000, 9000, 12000, 15000, 21000]) NeRFNetwork( (encoder): GridEncoder: input_dim=3 num_levels=16 level_dim=1 resolution=16 -> 2048 per_level_scale=1.3819 params=(6119864, 1) gridtype=hash align_corners=False interpolation=smoothstep (encoder_color): GridEncoder: input_dim=3 num_levels=16 level_dim=2 resolution=16 -> 2048 per_level_scale=1.3819 params=(6119864, 2) gridtype=hash align_corners=False interpolation=linear (sigma_net): MLP( (net): ModuleList( (0): Linear(in_features=16, out_features=32, bias=False) (1): Linear(in_features=32, out_features=1, bias=False) ) ) (color_net): MLP( (net): ModuleList( (0): Linear(in_features=32, out_features=64, bias=False) (1): Linear(in_features=64, out_features=64, bias=False) (2): Linear(in_features=64, out_features=6, bias=False) ) ) (specular_net): MLP( (net): ModuleList( (0): Linear(in_features=6, out_features=32, bias=False) (1): Linear(in_features=32, out_features=3, bias=False) ) ) ) [INFO] Loading stage 0 model to init stage 1 ... [INFO] loaded model. [WARN] missing keys: ['vertices_offsets'] [INFO] Loading latest checkpoint ... [WARN] No checkpoint found, abort loading latest model. ==> Saving mesh to trial_syn_lego/mesh_stage0 ==> Finished saving mesh.