Open Flaick opened 3 years ago
Also, I will be grateful if you can provide the hyperparameter setting for the 1% experiment
@Flaick, have you managed to run the fine-tuning?
I have a strange error. When I run python main.py --dataset_config configs/lvis.json --load pretrained_resnet101_checkpoint.pth --ema --epochs 150 --lr_drop 120 --eval_skip 5
on GPU, I get:
Epoch: [0] [ 0/73902] eta: 1 day, 13:20:57 lr: 0.000100 lr_backbone: 0.000010 lr_text_encoder: 0.000000 loss: 14.1489 (14.1489) loss_ce: 2.3089 (2.3089) loss_bbox: 0.0000 (0.0000) loss_giou: 0.0000 (0.0000) loss_contrastive_align: 0.0000 (0.0000) loss_ce_0: 2.2728 (2.2728) loss_bbox_0: 0.0000 (0.0000) loss_giou_0: 0.0000 (0.0000) loss_contrastive_align_0: 0.0000 (0.0000) loss_ce_1: 2.1969 (2.1969) loss_bbox_1: 0.0000 (0.0000) loss_giou_1: 0.0000 (0.0000) loss_contrastive_align_1: 0.0000 (0.0000) loss_ce_2: 2.4855 (2.4855) loss_bbox_2: 0.0000 (0.0000) loss_giou_2: 0.0000 (0.0000) loss_contrastive_align_2: 0.0000 (0.0000) loss_ce_3: 2.5023 (2.5023) loss_bbox_3: 0.0000 (0.0000) loss_giou_3: 0.0000 (0.0000) loss_contrastive_align_3: 0.0000 (0.0000) loss_ce_4: 2.3826 (2.3826) loss_bbox_4: 0.0000 (0.0000) loss_giou_4: 0.0000 (0.0000) loss_contrastive_align_4: 0.0000 (0.0000) loss_ce_unscaled: 2.3089 (2.3089) loss_bbox_unscaled: 0.0000 (0.0000) loss_giou_unscaled: 0.0000 (0.0000) cardinality_error_unscaled: 2.0000 (2.0000) loss_contrastive_align_unscaled: 0.0000 (0.0000) loss_ce_0_unscaled: 2.2728 (2.2728) loss_bbox_0_unscaled: 0.0000 (0.0000) loss_giou_0_unscaled: 0.0000 (0.0000) cardinality_error_0_unscaled: 3.0000 (3.0000) loss_contrastive_align_0_unscaled: 0.0000 (0.0000) loss_ce_1_unscaled: 2.1969 (2.1969) loss_bbox_1_unscaled: 0.0000 (0.0000) loss_giou_1_unscaled: 0.0000 (0.0000) cardinality_error_1_unscaled: 3.0000 (3.0000) loss_contrastive_align_1_unscaled: 0.0000 (0.0000) loss_ce_2_unscaled: 2.4855 (2.4855) loss_bbox_2_unscaled: 0.0000 (0.0000) loss_giou_2_unscaled: 0.0000 (0.0000) cardinality_error_2_unscaled: 2.0000 (2.0000) loss_contrastive_align_2_unscaled: 0.0000 (0.0000) loss_ce_3_unscaled: 2.5023 (2.5023) loss_bbox_3_unscaled: 0.0000 (0.0000) loss_giou_3_unscaled: 0.0000 (0.0000) cardinality_error_3_unscaled: 2.0000 (2.0000) loss_contrastive_align_3_unscaled: 0.0000 (0.0000) loss_ce_4_unscaled: 2.3826 (2.3826) loss_bbox_4_unscaled: 0.0000 (0.0000) loss_giou_4_unscaled: 0.0000 (0.0000) cardinality_error_4_unscaled: 2.0000 (2.0000) loss_contrastive_align_4_unscaled: 0.0000 (0.0000) time: 1.8194 data: 1.2582 max mem: 4014
Traceback (most recent call last):
File "main.py", line 643, in <module>
main(args)
File "main.py", line 546, in main
train_stats = train_one_epoch(
File "/home/pchelintsev/MDETR_untouched/mdetr/engine.py", line 73, in train_one_epoch
loss_dict.update(criterion(outputs, targets, positive_map))
File "/home/pchelintsev/.conda/envs/mdetr_env3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File "/home/pchelintsev/MDETR_untouched/mdetr/models/mdetr.py", line 679, in forward
losses.update(self.get_loss(loss, outputs, targets, positive_map, indices, num_boxes))
File "/home/pchelintsev/MDETR_untouched/mdetr/models/mdetr.py", line 655, in get_loss
return loss_map[loss](outputs, targets, positive_map, indices, num_boxes, **kwargs)
File "/home/pchelintsev/MDETR_untouched/mdetr/models/mdetr.py", line 487, in loss_labels
eos_coef[src_idx] = 1
RuntimeError: linearIndex.numel()*sliceSize*nElemBefore == value.numel()INTERNAL ASSERT FAILED at "/pytorch/aten/src/ATen/native/cuda/Indexing.cu":253, please report a bug to PyTorch. number of flattened indices did not match number of elements in the value tensor61
So, as it was suggested in the other issue, I run it on CPU and it worked!
Starting epoch 0
/home/pchelintsev/.conda/envs/mdetr_env3/lib/python3.8/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at ../aten/src/ATen/native/BinaryOps.cpp:467.)
return torch.floor_divide(self, other)
Epoch: [0] [ 0/73902] eta: 25 days, 11:34:41 lr: 0.000100 lr_backbone: 0.000010 lr_text_encoder: 0.000000 loss: 14.3907 (14.3907) loss_ce: 2.4076 (2.4076) loss_bbox: 0.0000 (0.0000) loss_giou: 0.0000 (0.0000) loss_contrastive_align: 0.0000 (0.0000) loss_ce_0: 2.4669 (2.4669) loss_bbox_0: 0.0000 (0.0000) loss_giou_0: 0.0000 (0.0000) loss_contrastive_align_0: 0.0000 (0.0000) loss_ce_1: 2.2301 (2.2301) loss_bbox_1: 0.0000 (0.0000) loss_giou_1: 0.0000 (0.0000) loss_contrastive_align_1: 0.0000 (0.0000) loss_ce_2: 2.5516 (2.5516) loss_bbox_2: 0.0000 (0.0000) loss_giou_2: 0.0000 (0.0000) loss_contrastive_align_2: 0.0000 (0.0000) loss_ce_3: 2.3101 (2.3101) loss_bbox_3: 0.0000 (0.0000) loss_giou_3: 0.0000 (0.0000) loss_contrastive_align_3: 0.0000 (0.0000) loss_ce_4: 2.4244 (2.4244) loss_bbox_4: 0.0000 (0.0000) loss_giou_4: 0.0000 (0.0000) loss_contrastive_align_4: 0.0000 (0.0000) loss_ce_unscaled: 2.4076 (2.4076) loss_bbox_unscaled: 0.0000 (0.0000) loss_giou_unscaled: 0.0000 (0.0000) cardinality_error_unscaled: 3.0000 (3.0000) loss_contrastive_align_unscaled: 0.0000 (0.0000) loss_ce_0_unscaled: 2.4669 (2.4669) loss_bbox_0_unscaled: 0.0000 (0.0000) loss_giou_0_unscaled: 0.0000 (0.0000) cardinality_error_0_unscaled: 3.0000 (3.0000) loss_contrastive_align_0_unscaled: 0.0000 (0.0000) loss_ce_1_unscaled: 2.2301 (2.2301) loss_bbox_1_unscaled: 0.0000 (0.0000) loss_giou_1_unscaled: 0.0000 (0.0000) cardinality_error_1_unscaled: 2.0000 (2.0000) loss_contrastive_align_1_unscaled: 0.0000 (0.0000) loss_ce_2_unscaled: 2.5516 (2.5516) loss_bbox_2_unscaled: 0.0000 (0.0000) loss_giou_2_unscaled: 0.0000 (0.0000) cardinality_error_2_unscaled: 3.0000 (3.0000) loss_contrastive_align_2_unscaled: 0.0000 (0.0000) loss_ce_3_unscaled: 2.3101 (2.3101) loss_bbox_3_unscaled: 0.0000 (0.0000) loss_giou_3_unscaled: 0.0000 (0.0000) cardinality_error_3_unscaled: 2.5000 (2.5000) loss_contrastive_align_3_unscaled: 0.0000 (0.0000) loss_ce_4_unscaled: 2.4244 (2.4244) loss_bbox_4_unscaled: 0.0000 (0.0000) loss_giou_4_unscaled: 0.0000 (0.0000) cardinality_error_4_unscaled: 3.0000 (3.0000) loss_contrastive_align_4_unscaled: 0.0000 (0.0000) time: 29.7919 data: 1.1390 max mem: 0
Epoch: [0] [ 10/73902] eta: 18 days, 6:11:53 lr: 0.000100 lr_backbone: 0.000010 lr_text_encoder: 0.000000 loss: 40.6416 (50.0278) loss_ce: 3.9509 (4.6128) loss_bbox: 0.2337 (0.4157) loss_giou: 0.5140 (0.6735) loss_contrastive_align: 1.1038 (2.0033) loss_ce_0: 6.8205 (5.5707) loss_bbox_0: 0.1225 (0.3284) loss_giou_0: 0.3370 (0.6317) loss_contrastive_align_0: 1.8220 (2.5607) loss_ce_1: 5.9798 (5.2364) loss_bbox_1: 0.2626 (0.3924) loss_giou_1: 0.4373 (0.7185) loss_contrastive_align_1: 1.6724 (2.5045) loss_ce_2: 4.3847 (5.0343) loss_bbox_2: 0.2473 (0.3728) loss_giou_2: 0.5318 (0.6514) loss_contrastive_align_2: 1.0731 (2.3479) loss_ce_3: 4.0940 (4.8984) loss_bbox_3: 0.2544 (0.4026) loss_giou_3: 0.5044 (0.6831) loss_contrastive_align_3: 1.0696 (2.1846) loss_ce_4: 3.9194 (4.6899) loss_bbox_4: 0.2297 (0.4037) loss_giou_4: 0.4369 (0.6624) loss_contrastive_align_4: 1.0977 (2.0480) loss_ce_unscaled: 3.9509 (4.6128) loss_bbox_unscaled: 0.0467 (0.0831) loss_giou_unscaled: 0.2570 (0.3368) cardinality_error_unscaled: 1.0000 (1.0909) loss_contrastive_align_unscaled: 1.1038 (2.0033) loss_ce_0_unscaled: 6.8205 (5.5707) loss_bbox_0_unscaled: 0.0245 (0.0657) loss_giou_0_unscaled: 0.1685 (0.3159) cardinality_error_0_unscaled: 1.0000 (1.5000) loss_contrastive_align_0_unscaled: 1.8220 (2.5607) loss_ce_1_unscaled: 5.9798 (5.2364) loss_bbox_1_unscaled: 0.0525 (0.0785) loss_giou_1_unscaled: 0.2186 (0.3593) cardinality_error_1_unscaled: 1.0000 (1.1818) loss_contrastive_align_1_unscaled: 1.6724 (2.5045) loss_ce_2_unscaled: 4.3847 (5.0343) loss_bbox_2_unscaled: 0.0495 (0.0746) loss_giou_2_unscaled: 0.2659 (0.3257) cardinality_error_2_unscaled: 1.0000 (1.2273) loss_contrastive_align_2_unscaled: 1.0731 (2.3479) loss_ce_3_unscaled: 4.0940 (4.8984) loss_bbox_3_unscaled: 0.0509 (0.0805) loss_giou_3_unscaled: 0.2522 (0.3415) cardinality_error_3_unscaled: 1.0000 (1.1818) loss_contrastive_align_3_unscaled: 1.0696 (2.1846) loss_ce_4_unscaled: 3.9194 (4.6899) loss_bbox_4_unscaled: 0.0459 (0.0807) loss_giou_4_unscaled: 0.2184 (0.3312) cardinality_error_4_unscaled: 1.0000 (1.0909) loss_contrastive_align_4_unscaled: 1.0977 (2.0480) time: 21.3489 data: 0.1094 max mem: 0
Epoch: [0] [ 20/73902] eta: 18 days, 16:13:48 lr: 0.000100 lr_backbone: 0.000010 lr_text_encoder: 0.000000 loss: 34.8511 (46.1291) loss_ce: 2.4758 (5.0781) loss_bbox: 0.2299 (0.3856) loss_giou: 0.4293 (0.7006) loss_contrastive_align: 0.4411 (1.4506) loss_ce_0: 4.1652 (5.0743) loss_bbox_0: 0.0811 (0.3611) loss_giou_0: 0.1932 (0.6737) loss_contrastive_align_0: 0.3715 (1.6258) loss_ce_1: 2.6043 (5.1180) loss_bbox_1: 0.1499 (0.3908) loss_giou_1: 0.3773 (0.7349) loss_contrastive_align_1: 0.3961 (1.6426) loss_ce_2: 2.6675 (5.0676) loss_bbox_2: 0.1963 (0.3785) loss_giou_2: 0.3574 (0.6974) loss_contrastive_align_2: 0.3626 (1.5843) loss_ce_3: 2.6249 (5.0039) loss_bbox_3: 0.1436 (0.3871) loss_giou_3: 0.4561 (0.6985) loss_contrastive_align_3: 0.3725 (1.5028) loss_ce_4: 2.5412 (5.0421) loss_bbox_4: 0.1969 (0.3801) loss_giou_4: 0.4178 (0.6954) loss_contrastive_align_4: 0.4074 (1.4550) loss_ce_unscaled: 2.4758 (5.0781) loss_bbox_unscaled: 0.0460 (0.0771) loss_giou_unscaled: 0.2146 (0.3503) cardinality_error_unscaled: 1.0000 (1.1429) loss_contrastive_align_unscaled: 0.4411 (1.4506) loss_ce_0_unscaled: 4.1652 (5.0743) loss_bbox_0_unscaled: 0.0162 (0.0722) loss_giou_0_unscaled: 0.0966 (0.3368) cardinality_error_0_unscaled: 1.0000 (1.4286) loss_contrastive_align_0_unscaled: 0.3715 (1.6258) loss_ce_1_unscaled: 2.6043 (5.1180) loss_bbox_1_unscaled: 0.0300 (0.0782) loss_giou_1_unscaled: 0.1886 (0.3675) cardinality_error_1_unscaled: 1.0000 (1.2143) loss_contrastive_align_1_unscaled: 0.3961 (1.6426) loss_ce_2_unscaled: 2.6675 (5.0676) loss_bbox_2_unscaled: 0.0393 (0.0757) loss_giou_2_unscaled: 0.1787 (0.3487) cardinality_error_2_unscaled: 1.0000 (1.2857) loss_contrastive_align_2_unscaled: 0.3626 (1.5843) loss_ce_3_unscaled: 2.6249 (5.0039) loss_bbox_3_unscaled: 0.0287 (0.0774) loss_giou_3_unscaled: 0.2281 (0.3492) cardinality_error_3_unscaled: 1.0000 (1.2143) loss_contrastive_align_3_unscaled: 0.3725 (1.5028) loss_ce_4_unscaled: 2.5412 (5.0421) loss_bbox_4_unscaled: 0.0394 (0.0760) loss_giou_4_unscaled: 0.2089 (0.3477) cardinality_error_4_unscaled: 1.0000 (1.1905) loss_contrastive_align_4_unscaled: 0.4074 (1.4550) time: 21.4431 data: 0.0061 max mem: 0
What can be wrong?((( Also, I've made sure that transformers
version is 4.5.1
I did not encounter that error when running on the GPU. I deploy it with slurm on 8 2080 ti cards, and I am not sure what is happening here. Sorry that I can not help with that.
Hmm, that's strange... We have to have the same libraries. What CUDA version do you have?
I hope @alcinos can help! Here is the necessary info:
python main.py --dataset_config configs/lvis.json --load pretrained_resnet101_checkpoint.pth --ema --epochs 150 --lr_drop 120 --eval_skip 5
Tesla V100 PCIe 32GB
Python 3.8.12
CUDA Version 11.0.228
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 4.5 1_gnu
abseil-cpp 20210324.2 h2531618_0
aiohttp 3.7.4.post0 py38h7f8727e_2
appdirs 1.4.4 pypi_0 pypi
arrow-cpp 3.0.0 py38h6b21186_4
async-timeout 3.0.1 py38h06a4308_0
attrs 21.2.0 pyhd3eb1b0_0
aws-c-common 0.4.57 he6710b0_1
aws-c-event-stream 0.1.6 h2531618_5
aws-checksums 0.1.9 he6710b0_0
aws-sdk-cpp 1.8.185 hce553d0_0
bcj-cffi 0.5.1 py38h295c915_0
blas 1.0 mkl
boost-cpp 1.73.0 h27cfd23_11
bottleneck 1.3.2 py38heb32a55_1
brotli 1.0.9 he6710b0_2
brotli-python 1.0.9 py38heb0550a_2
brotlicffi 1.0.9.2 py38h295c915_0
brotlipy 0.7.0 py38h27cfd23_1003
bzip2 1.0.8 h7b6447c_0
c-ares 1.17.1 h27cfd23_0
ca-certificates 2021.10.26 h06a4308_2
certifi 2021.10.8 py38h06a4308_0
cffi 1.14.6 py38h400218f_0
chardet 4.0.0 py38h06a4308_1003
charset-normalizer 2.0.7 pypi_0 pypi
click 8.0.3 pypi_0 pypi
cloudpickle 2.0.0 pypi_0 pypi
colorama 0.4.4 pyhd3eb1b0_0
conllu 4.4.1 pyhd3eb1b0_0
cryptography 35.0.0 py38hd23ed53_0
cycler 0.10.0 pypi_0 pypi
cython 0.29.24 pypi_0 pypi
dataclasses 0.8 pyh6d0b6a4_7
datasets 1.12.1 pyhd3eb1b0_0
dill 0.3.4 pyhd3eb1b0_0
double-conversion 3.1.5 he6710b0_1
et_xmlfile 1.1.0 py38h06a4308_0
filelock 3.3.1 pyhd3eb1b0_1
fsspec 2021.8.1 pyhd3eb1b0_0
gflags 2.2.2 he6710b0_0
glog 0.5.0 h2531618_0
gmp 6.2.1 h2531618_2
grpc-cpp 1.39.0 hae934f6_5
h5py 3.5.0 pypi_0 pypi
huggingface-hub 0.0.19 pypi_0 pypi
huggingface_hub 0.0.17 pyhd3eb1b0_0
icu 58.2 he6710b0_3
idna 3.3 pypi_0 pypi
importlib-metadata 4.8.1 py38h06a4308_0
importlib_metadata 4.8.1 hd3eb1b0_0
intel-openmp 2021.4.0 h06a4308_3561
joblib 1.1.0 pypi_0 pypi
kiwisolver 1.3.2 pypi_0 pypi
krb5 1.19.2 hac12032_0
ld_impl_linux-64 2.35.1 h7274673_9
libboost 1.73.0 h3ff78a5_11
libcurl 7.78.0 h0b77cf5_0
libedit 3.1.20210714 h7f8727e_0
libev 4.33 h7f8727e_1
libevent 2.1.8 h1ba5d50_1
libffi 3.3 he6710b0_2
libgcc-ng 9.3.0 h5101ec6_17
libgomp 9.3.0 h5101ec6_17
libnghttp2 1.41.0 hf8bcb03_2
libprotobuf 3.17.2 h4ff587b_1
libssh2 1.9.0 h1ba5d50_1
libstdcxx-ng 9.3.0 hd4cf53a_17
libthrift 0.14.2 hcc01f38_0
libxml2 2.9.12 h03d6c58_0
libxslt 1.1.34 hc22bd24_0
lxml 4.6.3 py38h9120a33_0
lz4-c 1.9.3 h295c915_1
matplotlib 3.4.3 pypi_0 pypi
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py38h7f8727e_0
mkl_fft 1.3.1 py38hd3c417c_0
mkl_random 1.2.2 py38h51133e4_0
multidict 5.1.0 py38h27cfd23_2
multimodal 0.0.12 pypi_0 pypi
multiprocess 0.70.12.2 py38h7f8727e_0
multivolumefile 0.2.3 pyhd3eb1b0_0
ncurses 6.2 he6710b0_1
numexpr 2.7.3 py38h22e1b3c_1
numpy 1.21.3 pypi_0 pypi
numpy-base 1.21.2 py38h79a1101_0
openpyxl 3.0.9 pyhd3eb1b0_0
openssl 1.1.1l h7f8727e_0
orc 1.6.9 ha97a36c_3
packaging 21.0 pyhd3eb1b0_0
pandas 1.3.4 py38h8c16a72_0
pillow 8.4.0 pypi_0 pypi
pip 21.2.4 py38h06a4308_0
portalocker 2.3.0 py38h06a4308_0
py7zr 0.16.1 pyhd3eb1b0_1
pyarrow 3.0.0 py38he0739d4_3
pycparser 2.20 py_2
pycryptodomex 3.10.1 py38h27cfd23_1
pyopenssl 21.0.0 pyhd3eb1b0_1
pyparsing 3.0.1 pypi_0 pypi
pyppmd 0.16.1 py38h295c915_0
pysmartdl 1.3.4 pypi_0 pypi
pysocks 1.7.1 py38h06a4308_0
python 3.8.12 h12debd9_0
python-dateutil 2.8.2 pyhd3eb1b0_0
python-xxhash 2.0.2 py38h7f8727e_0
pytz 2021.3 pyhd3eb1b0_0
pyyaml 6.0 pypi_0 pypi
pyzstd 0.14.4 py38h7f8727e_3
re2 2020.11.01 h2531618_1
readline 8.1 h27cfd23_0
regex 2021.10.23 pypi_0 pypi
requests 2.26.0 pyhd3eb1b0_0
sacrebleu 2.0.0 pyhd3eb1b0_1
scipy 1.7.1 pypi_0 pypi
sentencepiece 0.1.95 py38hd09550d_0
setuptools 58.0.4 py38h06a4308_0
six 1.16.0 pyhd3eb1b0_0
snappy 1.1.8 he6710b0_0
sqlite 3.36.0 hc218d9a_0
tables 3.6.1 pypi_0 pypi
tabulate 0.8.9 py38h06a4308_0
texttable 1.6.4 pyhd3eb1b0_0
tk 8.6.11 h1ccaba5_0
torch 1.9.1 pypi_0 pypi
torchtext 0.10.1 pypi_0 pypi
torchvision 0.10.1 pypi_0 pypi
tqdm 4.62.3 pypi_0 pypi
transformers 4.5.1 pypi_0 pypi
typing 3.10.0.0 py38h06a4308_0
typing-extensions 3.10.0.2 hd3eb1b0_0
typing_extensions 3.10.0.2 pyh06a4308_0
uriparser 0.9.3 he6710b0_1
urllib3 1.26.7 pypi_0 pypi
utf8proc 2.6.1 h27cfd23_0
wcwidth 0.2.5 pypi_0 pypi
wheel 0.37.0 pyhd3eb1b0_1
xmltodict 0.12.0 pypi_0 pypi
xxhash 0.8.0 h7f8727e_3
xz 5.2.5 h7b6447c_0
yaml 0.2.5 h7b6447c_0
yarl 1.6.3 py38h27cfd23_0
zipp 3.6.0 pyhd3eb1b0_0
zlib 1.2.11 h7b6447c_3
zstd 1.4.9 haebb681_0
gpustat
(with batch_size=1
MDETR consumes not bigger than 7 Gb)Also, I tried to run fine-tuning in docker with CUDA 10.2 and CUDA 11.1. Again, it works on the CPU but I still get the same mistake on the GPU :( What did I run to setup the environments?
conda init
bash
conda create -n mdetr_env python=3.8
conda activate mdetr_env
pip install numpy
pip install -r requirements.txt
numpy is needed because pycocotools uses it (I got an error without numpy installed). Also, maybe it's worth pointing out that pycocotools ''was installed using the legacy 'setup.py install' method, because a wheel could not be built for it''.
conda list
gives:
_libgcc_mutex 0.1 main
_openmp_mutex 4.5 1_gnu
ca-certificates 2021.10.26 h06a4308_2
certifi 2021.10.8 py38h06a4308_2
charset-normalizer 2.0.10 pypi_0 pypi
click 8.0.3 pypi_0 pypi
cloudpickle 2.0.0 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
cython 0.29.26 pypi_0 pypi
filelock 3.4.2 pypi_0 pypi
flatbuffers 2.0 pypi_0 pypi
fonttools 4.29.0 pypi_0 pypi
idna 3.3 pypi_0 pypi
joblib 1.1.0 pypi_0 pypi
kiwisolver 1.3.2 pypi_0 pypi
ld_impl_linux-64 2.35.1 h7274673_9
libffi 3.3 he6710b0_2
libgcc-ng 9.3.0 h5101ec6_17
libgomp 9.3.0 h5101ec6_17
libstdcxx-ng 9.3.0 hd4cf53a_17
matplotlib 3.5.1 pypi_0 pypi
ncurses 6.3 h7f8727e_2
numpy 1.22.1 pypi_0 pypi
onnx 1.10.2 pypi_0 pypi
onnxruntime 1.10.0 pypi_0 pypi
openssl 1.1.1m h7f8727e_0
packaging 21.3 pypi_0 pypi
panopticapi 0.1 pypi_0 pypi
pillow 9.0.0 pypi_0 pypi
pip 21.2.4 py38h06a4308_0
prettytable 3.0.0 pypi_0 pypi
protobuf 3.19.3 pypi_0 pypi
pycocotools 2.0 pypi_0 pypi
pyparsing 3.0.7 pypi_0 pypi
python 3.8.12 h12debd9_0
python-dateutil 2.8.2 pypi_0 pypi
readline 8.1.2 h7f8727e_1
regex 2022.1.18 pypi_0 pypi
requests 2.27.1 pypi_0 pypi
sacremoses 0.0.47 pypi_0 pypi
scipy 1.7.3 pypi_0 pypi
setuptools 58.0.4 py38h06a4308_0
six 1.16.0 pypi_0 pypi
sqlite 3.37.0 hc218d9a_0
submitit 1.4.1 pypi_0 pypi
timm 0.5.4 pypi_0 pypi
tk 8.6.11 h1ccaba5_0
tokenizers 0.10.3 pypi_0 pypi
torch 1.9.1 pypi_0 pypi
torchvision 0.10.1 pypi_0 pypi
tqdm 4.62.3 pypi_0 pypi
transformers 4.5.1 pypi_0 pypi
typing-extensions 4.0.1 pypi_0 pypi
urllib3 1.26.8 pypi_0 pypi
wcwidth 0.2.5 pypi_0 pypi
wheel 0.37.1 pyhd3eb1b0_0
xmltodict 0.12.0 pypi_0 pypi
xz 5.2.5 h7b6447c_0
zlib 1.2.11 h7f8727e_4
transformers=4.5.1, so I have no idea why the mistake occurs. Maybe, I should try the good old 'print' method, print all the sizes in the hope of noticing something wrong.
Oh, there is no error with python=3.7.10, torch=1.8.1, torchvision=0.9.1, CUDA=11.1, transformers=4.5.1! With the recommended python=3.8 it also works (I'm using python=3.8.12)
Hello, I am wondering if there is log file available for the fine tuning on 1% LVIS few shot detection.