aurora95 / Keras-FCN

Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)
MIT License
650 stars 268 forks source link

Mean IoU metrics, apply only when batch_size=1 #40

Closed se7oluti0n closed 7 years ago

se7oluti0n commented 7 years ago

I have implemented Mean IoU metrics, based on calculate_iou in evaluate.py. Could someone check it out

def sparse_iou_ignoring_last_label(y_true, y_pred):
     # mIoU
    nb_classes = K.int_shape(y_pred)[-1]
    y_pred = K.reshape(y_pred, (-1, nb_classes))
    pred = K.argmax(y_pred, axis=1)

    gt = tf.reshape(y_true, [-1,])
    weights = tf.cast(tf.less_equal(gt, nb_classes - 1), tf.int32) # Ignoring all labels greater than or equal to n_classes.

    confusion_matrix = tf.confusion_matrix(gt, pred, num_classes=nb_classes, weights=weights, dtype=tf.float32)

    I = tf.diag_part(confusion_matrix)
    U = tf.reduce_sum(confusion_matrix, axis=0) + tf.reduce_sum(confusion_matrix, axis=1) - I

    IoU = I / (U + tf.convert_to_tensor(K.epsilon(), dtype=tf.float32))
    return tf.reduce_mean(IoU) 

If it is correct, I want to extend it when batch_size > 1