autodistill / autodistill-llava

LLaVA base model for use with Autodistill.
https://docs.autodistill.com
Apache License 2.0
5 stars 2 forks source link

Error in Kaggle #3

Open whatisslove11 opened 1 year ago

whatisslove11 commented 1 year ago

Hello! I wanna test LLaVa for auto distillation, but I got this error:

[TypeError: 'NoneType' object is not subscriptable](https://pytorch.org/docs/master/notes/extending.func.html%3C/span%3E%3Cspan)

Minimal code for implement the error:

from autodistill.detection import CaptionOntology

ontology = CaptionOntology({
    "car": "small_car",
    "motorbike": "bike",
    "bus": "bus"
})

from autodistill_llava import LLaVA

base_model = LLaVA(ontology=ontology)
dataset = base_model.label(
    input_folder='/kaggle/input/distillation-test/traffic_dataset/test',
    extension=".jpg",
    output_folder='/kaggle/working/images'
)

Full error:

TypeError                                 Traceback (most recent call last)
Cell In[7], line 4
      1 from autodistill_llava import LLaVA
      3 base_model = LLaVA(ontology=ontology)
----> 4 dataset = base_model.label(
      5     input_folder='/kaggle/input/distillation-test/traffic_dataset/test',
      6     extension=".jpg",
      7     output_folder='/kaggle/working/images'
      8 )

File /opt/conda/lib/python3.10/site-packages/autodistill/detection/detection_base_model.py:52, in DetectionBaseModel.label(self, input_folder, extension, output_folder, human_in_the_loop, roboflow_project, roboflow_tags)
     50     f_path_short = os.path.basename(f_path)
     51     images_map[f_path_short] = image.copy()
---> 52     detections = self.predict(f_path)
     53     detections_map[f_path_short] = detections
     55 dataset = sv.DetectionDataset(
     56     self.ontology.classes(), images_map, detections_map
     57 )

File /opt/conda/lib/python3.10/site-packages/autodistill_llava/model.py:140, in LLaVA.predict(self, input)
    137 streamer = TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
    139 with torch.inference_mode():
--> 140     output_ids = self.model.generate(
    141         input_ids,
    142         images=image_tensor,
    143         do_sample=True,
    144         temperature=0.2,
    145         max_new_tokens=512,
    146         streamer=streamer,
    147         use_cache=True,
    148         stopping_criteria=[stopping_criteria])
    150 outputs = self.tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    152 self.conv.messages[-1][-1] = outputs

File /opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py:115, in context_decorator.<locals>.decorate_context(*args, **kwargs)
    112 @functools.wraps(func)
    113 def decorate_context(*args, **kwargs):
    114     with ctx_factory():
--> 115         return func(*args, **kwargs)

File /opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py:1588, in GenerationMixin.generate(self, inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, assistant_model, streamer, **kwargs)
   1580     input_ids, model_kwargs = self._expand_inputs_for_generation(
   1581         input_ids=input_ids,
   1582         expand_size=generation_config.num_return_sequences,
   1583         is_encoder_decoder=self.config.is_encoder_decoder,
   1584         **model_kwargs,
   1585     )
   1587     # 13. run sample
-> 1588     return self.sample(
   1589         input_ids,
   1590         logits_processor=logits_processor,
   1591         logits_warper=logits_warper,
   1592         stopping_criteria=stopping_criteria,
   1593         pad_token_id=generation_config.pad_token_id,
   1594         eos_token_id=generation_config.eos_token_id,
   1595         output_scores=generation_config.output_scores,
   1596         return_dict_in_generate=generation_config.return_dict_in_generate,
   1597         synced_gpus=synced_gpus,
   1598         streamer=streamer,
   1599         **model_kwargs,
   1600     )
   1602 elif is_beam_gen_mode:
   1603     if generation_config.num_return_sequences > generation_config.num_beams:

File /opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py:2642, in GenerationMixin.sample(self, input_ids, logits_processor, stopping_criteria, logits_warper, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, streamer, **model_kwargs)
   2639 model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
   2641 # forward pass to get next token
-> 2642 outputs = self(
   2643     **model_inputs,
   2644     return_dict=True,
   2645     output_attentions=output_attentions,
   2646     output_hidden_states=output_hidden_states,
   2647 )
   2649 if synced_gpus and this_peer_finished:
   2650     continue  # don't waste resources running the code we don't need

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
    163         output = old_forward(*args, **kwargs)
    164 else:
--> 165     output = old_forward(*args, **kwargs)
    166 return module._hf_hook.post_forward(module, output)

File ~/.autodistill/LLaVA/llava/model/language_model/llava_llama.py:79, in LlavaLlamaForCausalLM.forward(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, images, return_dict)
     56 def forward(
     57     self,
     58     input_ids: torch.LongTensor = None,
   (...)
     68     return_dict: Optional[bool] = None,
     69 ) -> Union[Tuple, CausalLMOutputWithPast]:
     71     if inputs_embeds is None:
     72         (
     73             input_ids,
     74             position_ids,
     75             attention_mask,
     76             past_key_values,
     77             inputs_embeds,
     78             labels
---> 79         ) = self.prepare_inputs_labels_for_multimodal(
     80             input_ids,
     81             position_ids,
     82             attention_mask,
     83             past_key_values,
     84             labels,
     85             images
     86         )
     88     return super().forward(
     89         input_ids=input_ids,
     90         attention_mask=attention_mask,
   (...)
     98         return_dict=return_dict
     99     )

File ~/.autodistill/LLaVA/llava/model/llava_arch.py:121, in LlavaMetaForCausalLM.prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images)
    119     image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
    120 else:
--> 121     image_features = self.encode_images(images).to(self.device)
    123 # TODO: image start / end is not implemented here to support pretraining.
    124 if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):

File ~/.autodistill/LLaVA/llava/model/llava_arch.py:96, in LlavaMetaForCausalLM.encode_images(self, images)
     94 def encode_images(self, images):
     95     image_features = self.get_model().get_vision_tower()(images)
---> 96     image_features = self.get_model().mm_projector(image_features)
     97     return image_features

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
    163         output = old_forward(*args, **kwargs)
    164 else:
--> 165     output = old_forward(*args, **kwargs)
    166 return module._hf_hook.post_forward(module, output)

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/container.py:217, in Sequential.forward(self, input)
    215 def forward(self, input):
    216     for module in self:
--> 217         input = module(input)
    218     return input

File /opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1501, in Module._call_impl(self, *args, **kwargs)
   1496 # If we don't have any hooks, we want to skip the rest of the logic in
   1497 # this function, and just call forward.
   1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1499         or _global_backward_pre_hooks or _global_backward_hooks
   1500         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1501     return forward_call(*args, **kwargs)
   1502 # Do not call functions when jit is used
   1503 full_backward_hooks, non_full_backward_hooks = [], []

File /opt/conda/lib/python3.10/site-packages/accelerate/hooks.py:165, in add_hook_to_module.<locals>.new_forward(*args, **kwargs)
    163         output = old_forward(*args, **kwargs)
    164 else:
--> 165     output = old_forward(*args, **kwargs)
    166 return module._hf_hook.post_forward(module, output)

File /opt/conda/lib/python3.10/site-packages/bitsandbytes/nn/modules.py:441, in Linear8bitLt.forward(self, x)
    438 if self.bias is not None and self.bias.dtype != x.dtype:
    439     self.bias.data = self.bias.data.to(x.dtype)
--> 441 out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
    443 if not self.state.has_fp16_weights:
    444     if self.state.CB is not None and self.state.CxB is not None:
    445         # we converted 8-bit row major to turing/ampere format in the first inference pass
    446         # we no longer need the row-major weight

File /opt/conda/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:563, in matmul(A, B, out, state, threshold, bias)
    561 if threshold > 0.0:
    562     state.threshold = threshold
--> 563 return MatMul8bitLt.apply(A, B, out, bias, state)

File /opt/conda/lib/python3.10/site-packages/torch/autograd/function.py:506, in Function.apply(cls, *args, **kwargs)
    503 if not torch._C._are_functorch_transforms_active():
    504     # See NOTE: [functorch vjp and autograd interaction]
    505     args = _functorch.utils.unwrap_dead_wrappers(args)
--> 506     return super().apply(*args, **kwargs)  # type: ignore[misc]
    508 if cls.setup_context == _SingleLevelFunction.setup_context:
    509     raise RuntimeError(
    510         'In order to use an autograd.Function with functorch transforms '
    511         '(vmap, grad, jvp, jacrev, ...), it must override the setup_context '
    512         'staticmethod. For more details, please see '
    513         '[https://pytorch.org/docs/master/notes/extending.func.html](https://pytorch.org/docs/master/notes/extending.func.html%3C/span%3E%3Cspan) style="color:rgb(175,0,0)">')

File /opt/conda/lib/python3.10/site-packages/bitsandbytes/autograd/_functions.py:384, in MatMul8bitLt.forward(ctx, A, B, out, bias, state)
    382     outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
    383 else:
--> 384     outliers = state.CB[:, state.idx.long()].clone()
    386 state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype)
    387 CA[:, state.idx.long()] = 0

TypeError: 'NoneType' object is not subscriptable
german36-del commented 7 months ago

It could be that you are mixing model between cpu and gpu and bytes dont like that.

Try just with cuda

tokenizer, model, image_processor, context_len = load_pretrained_model( MODEL, None, model_name, True, False, device="cuda", device_map={"": 0} )