Closed ghost closed 8 years ago
Having the same issue
Did you also try to run the example?
Yep ... I'll copy the output below (I appreciate you working on this, once I get it working I'm sure it will be awesome)
[INFO] [2016-02-02 19:03:42,316:AutoML(1):aa6aede47b243ade0492c3bbad51d1ab] Start calculating metafeatures for aa6aede47b243ade0492c3bbad51d1ab [INFO] [2016-02-02 19:03:42,321:AutoML(1):aa6aede47b243ade0492c3bbad51d1ab] Calculating Metafeatures (categorical attributes) took 0.00 [INFO] [2016-02-02 19:03:42,349:AutoML(1):aa6aede47b243ade0492c3bbad51d1ab] Calculating Metafeatures (encoded attributes) took 0.03sec [INFO] [2016-02-02 19:03:42,804:AutoML(1):aa6aede47b243ade0492c3bbad51d1ab] Time left for aa6aede47b243ade0492c3bbad51d1ab after finding initial configurations: 3598.26sec [INFO] [2016-02-02 19:03:42,809:autosklearn.util.smac] Start SMAC with 3598.25sec time left [INFO] [2016-02-02 19:03:42,809:autosklearn.util.smac] Calling: smac --numRun 1 --scenario /tmp/autosklearn_tmp_32341_2124/aa6aede47b243ade0492c3bbad51d1ab.scenario --num-ei-random 1000 --num-challengers 100 --initial-incumbent DEFAULT --retryTargetAlgorithmRunCount 0 --intensification-percentage 0.5 --validation false --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'sgd' -classifier:sgd:alpha '0.0001' -classifier:sgd:average 'True' -classifier:sgd:eta0 '0.01' -classifier:sgd:fit_intercept 'True' -classifier:sgd:learning_rate 'optimal' -classifier:sgd:loss 'hinge' -classifier:sgd:n_iter '5' -classifier:sgd:penalty 'l2' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.1' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'no_preprocessing' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'extra_trees' -classifier:extra_trees:bootstrap 'False' -classifier:extra_trees:criterion 'entropy' -classifier:extra_trees:max_depth 'None' -classifier:extra_trees:max_features '2.10843034926' -classifier:extra_trees:min_samples_leaf '5' -classifier:extra_trees:min_samples_split '6' -classifier:extra_trees:min_weight_fraction_leaf '0.0' -classifier:extra_trees:n_estimators '100' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.0139334888516' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'select_rates' -preprocessor:select_rates:alpha '0.158094692549' -preprocessor:select_rates:mode 'fwe' -preprocessor:select_rates:score_func 'chi2' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'liblinear_svc' -classifier:liblinear_svc:C '34.5233071874' -classifier:liblinear_svc:dual 'False' -classifier:liblinear_svc:fit_intercept 'True' -classifier:liblinear_svc:intercept_scaling '1' -classifier:liblinear_svc:loss 'squared_hinge' -classifier:liblinear_svc:multi_class 'ovr' -classifier:liblinear_svc:penalty 'l2' -classifier:liblinear_svc:tol '0.0103053322307' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.000124642010466' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'polynomial' -preprocessor:polynomial:degree '2' -preprocessor:polynomial:include_bias 'True' -preprocessor:polynomial:interaction_only 'False' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'libsvm_svc' -classifier:libsvm_svc:C '2099.09721534' -classifier:libsvm_svc:coef0 '0.328500980533' -classifier:libsvm_svc:degree '3' -classifier:libsvm_svc:gamma '2.80955762537' -classifier:libsvm_svc:kernel 'poly' -classifier:libsvm_svc:max_iter '-1' -classifier:libsvm_svc:shrinking 'False' -classifier:libsvm_svc:tol '0.00321372911771' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.00338399109404' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'select_rates' -preprocessor:select_rates:alpha '0.0859436710109' -preprocessor:select_rates:mode 'fpr' -preprocessor:select_rates:score_func 'chi2' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'liblinear_svc' -classifier:liblinear_svc:C '0.58158687766' -classifier:liblinear_svc:dual 'False' -classifier:liblinear_svc:fit_intercept 'True' -classifier:liblinear_svc:intercept_scaling '1' -classifier:liblinear_svc:loss 'squared_hinge' -classifier:liblinear_svc:multi_class 'ovr' -classifier:liblinear_svc:penalty 'l2' -classifier:liblinear_svc:tol '0.0526132119058' -imputation:strategy 'most_frequent' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'polynomial' -preprocessor:polynomial:degree '2' -preprocessor:polynomial:include_bias 'True' -preprocessor:polynomial:interaction_only 'False' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'proj_logit' -classifier:proj_logit:max_epochs '2' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.00118703229042' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'no_preprocessing' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'random_forest' -classifier:random_forest:bootstrap 'False' -classifier:random_forest:criterion 'gini' -classifier:random_forest:max_depth 'None' -classifier:random_forest:max_features '1.92119344674' -classifier:random_forest:max_leaf_nodes 'None' -classifier:random_forest:min_samples_leaf '3' -classifier:random_forest:min_samples_split '7' -classifier:random_forest:min_weight_fraction_leaf '0.0' -classifier:random_forest:n_estimators '100' -imputation:strategy 'median' -one_hot_encoding:minimum_fraction '0.18557940618' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'feature_agglomeration' -preprocessor:feature_agglomeration:affinity 'euclidean' -preprocessor:feature_agglomeration:linkage 'ward' -preprocessor:feature_agglomeration:n_clusters '235' -preprocessor:feature_agglomeration:pooling_func 'mean' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'lda' -classifier:lda:n_components '242' -classifier:lda:shrinkage 'None' -classifier:lda:tol '0.00113395744796' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.00488914480304' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'gem' -preprocessor:gem:N '8' -preprocessor:gem:precond '0.393445967511' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'libsvm_svc' -classifier:libsvm_svc:C '2.82095068356' -classifier:libsvm_svc:coef0 '0.752565840633' -classifier:libsvm_svc:degree '5' -classifier:libsvm_svc:gamma '1.92439641344' -classifier:libsvm_svc:kernel 'poly' -classifier:libsvm_svc:max_iter '-1' -classifier:libsvm_svc:shrinking 'True' -classifier:libsvm_svc:tol '0.000376820736906' -imputation:strategy 'mean' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'select_percentile_classification' -preprocessor:select_percentile_classification:percentile '83.6010685058' -preprocessor:select_percentile_classification:score_func 'f_classif' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'proj_logit' -classifier:proj_logit:max_epochs '11' -imputation:strategy 'median' -one_hot_encoding:minimum_fraction '0.00288336715952' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'gem' -preprocessor:gem:N '16' -preprocessor:gem:precond '0.306284393464' -rescaling:choice 'standardize'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'extra_trees' -classifier:extra_trees:bootstrap 'True' -classifier:extra_trees:criterion 'gini' -classifier:extra_trees:max_depth 'None' -classifier:extra_trees:max_features '2.37790105664' -classifier:extra_trees:min_samples_leaf '2' -classifier:extra_trees:min_samples_split '4' -classifier:extra_trees:min_weight_fraction_leaf '0.0' -classifier:extra_trees:n_estimators '100' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.00430577029047' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'select_rates' -preprocessor:select_rates:alpha '0.309340894918' -preprocessor:select_rates:mode 'fdr' -preprocessor:select_rates:score_func 'f_classif' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'libsvm_svc' -classifier:libsvm_svc:C '17.0489364595' -classifier:libsvm_svc:coef0 '0.744604016557' -classifier:libsvm_svc:degree '1' -classifier:libsvm_svc:gamma '0.0861002047329' -classifier:libsvm_svc:kernel 'poly' -classifier:libsvm_svc:max_iter '-1' -classifier:libsvm_svc:shrinking 'True' -classifier:libsvm_svc:tol '0.0236218221161' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.000186313230587' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'gem' -preprocessor:gem:N '17' -preprocessor:gem:precond '0.148774809986' -rescaling:choice 'standardize'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'gradient_boosting' -classifier:gradient_boosting:learning_rate '0.250449093686' -classifier:gradient_boosting:loss 'deviance' -classifier:gradient_boosting:max_depth '4' -classifier:gradient_boosting:max_features '3.01322770006' -classifier:gradient_boosting:max_leaf_nodes 'None' -classifier:gradient_boosting:min_samples_leaf '5' -classifier:gradient_boosting:min_samples_split '10' -classifier:gradient_boosting:min_weight_fraction_leaf '0.0' -classifier:gradient_boosting:n_estimators '100' -classifier:gradient_boosting:subsample '0.735717575373' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.278160654679' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'select_rates' -preprocessor:select_rates:alpha '0.0507415761243' -preprocessor:select_rates:mode 'fpr' -preprocessor:select_rates:score_func 'f_classif' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'sgd' -classifier:sgd:alpha '0.000645727672061' -classifier:sgd:average 'True' -classifier:sgd:epsilon '7.98141194861e-05' -classifier:sgd:eta0 '0.0636614615972' -classifier:sgd:fit_intercept 'True' -classifier:sgd:learning_rate 'invscaling' -classifier:sgd:loss 'modified_huber' -classifier:sgd:n_iter '133' -classifier:sgd:penalty 'l2' -classifier:sgd:power_t '0.198720154544' -imputation:strategy 'mean' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'liblinear_svc_preprocessor' -preprocessor:liblinear_svc_preprocessor:C '27.6468634938' -preprocessor:liblinear_svc_preprocessor:dual 'False' -preprocessor:liblinear_svc_preprocessor:fit_intercept 'True' -preprocessor:liblinear_svc_preprocessor:intercept_scaling '1' -preprocessor:liblinear_svc_preprocessor:loss 'squared_hinge' -preprocessor:liblinear_svc_preprocessor:multi_class 'ovr' -preprocessor:liblinear_svc_preprocessor:penalty 'l1' -preprocessor:liblinear_svc_preprocessor:tol '0.00186672282072' -rescaling:choice 'normalize'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'libsvm_svc' -classifier:libsvm_svc:C '295.418518308' -classifier:libsvm_svc:gamma '0.0509801555285' -classifier:libsvm_svc:kernel 'rbf' -classifier:libsvm_svc:max_iter '-1' -classifier:libsvm_svc:shrinking 'False' -classifier:libsvm_svc:tol '0.0161617567103' -imputation:strategy 'median' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'feature_agglomeration' -preprocessor:feature_agglomeration:affinity 'cosine' -preprocessor:feature_agglomeration:linkage 'complete' -preprocessor:feature_agglomeration:n_clusters '216' -preprocessor:feature_agglomeration:pooling_func 'mean' -rescaling:choice 'none'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'gradient_boosting' -classifier:gradient_boosting:learning_rate '0.200667953199' -classifier:gradient_boosting:loss 'deviance' -classifier:gradient_boosting:max_depth '7' -classifier:gradient_boosting:max_features '3.93258694897' -classifier:gradient_boosting:max_leaf_nodes 'None' -classifier:gradient_boosting:min_samples_leaf '7' -classifier:gradient_boosting:min_samples_split '11' -classifier:gradient_boosting:min_weight_fraction_leaf '0.0' -classifier:gradient_boosting:n_estimators '100' -classifier:gradient_boosting:subsample '0.997653205575' -imputation:strategy 'most_frequent' -one_hot_encoding:minimum_fraction '0.000461996907301' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'no_preprocessing' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'extra_trees' -classifier:extra_trees:bootstrap 'False' -classifier:extra_trees:criterion 'gini' -classifier:extra_trees:max_depth 'None' -classifier:extra_trees:max_features '4.27689663157' -classifier:extra_trees:min_samples_leaf '3' -classifier:extra_trees:min_samples_split '8' -classifier:extra_trees:min_weight_fraction_leaf '0.0' -classifier:extra_trees:n_estimators '100' -imputation:strategy 'mean' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'extra_trees_preproc_for_classification' -preprocessor:extra_trees_preproc_for_classification:bootstrap 'True' -preprocessor:extra_trees_preproc_for_classification:criterion 'gini' -preprocessor:extra_trees_preproc_for_classification:max_depth 'None' -preprocessor:extra_trees_preproc_for_classification:max_features '4.29160593434' -preprocessor:extra_trees_preproc_for_classification:min_samples_leaf '4' -preprocessor:extra_trees_preproc_for_classification:min_samples_split '3' -preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf '0.0' -preprocessor:extra_trees_preproc_for_classification:n_estimators '100' -rescaling:choice 'normalize'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'random_forest' -classifier:random_forest:bootstrap 'True' -classifier:random_forest:criterion 'gini' -classifier:random_forest:max_depth 'None' -classifier:random_forest:max_features '1.0' -classifier:random_forest:max_leaf_nodes 'None' -classifier:random_forest:min_samples_leaf '1' -classifier:random_forest:min_samples_split '2' -classifier:random_forest:min_weight_fraction_leaf '0.0' -classifier:random_forest:n_estimators '100' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.01' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'no_preprocessing' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'random_forest' -classifier:random_forest:bootstrap 'True' -classifier:random_forest:criterion 'gini' -classifier:random_forest:max_depth 'None' -classifier:random_forest:max_features '0.62203299707' -classifier:random_forest:max_leaf_nodes 'None' -classifier:random_forest:min_samples_leaf '6' -classifier:random_forest:min_samples_split '8' -classifier:random_forest:min_weight_fraction_leaf '0.0' -classifier:random_forest:n_estimators '100' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.000159991240057' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'feature_agglomeration' -preprocessor:feature_agglomeration:affinity 'cosine' -preprocessor:feature_agglomeration:linkage 'average' -preprocessor:feature_agglomeration:n_clusters '309' -preprocessor:feature_agglomeration:pooling_func 'mean' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'liblinear_svc' -classifier:liblinear_svc:C '0.30992815211' -classifier:liblinear_svc:dual 'False' -classifier:liblinear_svc:fit_intercept 'True' -classifier:liblinear_svc:intercept_scaling '1' -classifier:liblinear_svc:loss 'squared_hinge' -classifier:liblinear_svc:multi_class 'ovr' -classifier:liblinear_svc:penalty 'l2' -classifier:liblinear_svc:tol '0.0655697501082' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.00470215321783' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'feature_agglomeration' -preprocessor:feature_agglomeration:affinity 'euclidean' -preprocessor:feature_agglomeration:linkage 'average' -preprocessor:feature_agglomeration:n_clusters '283' -preprocessor:feature_agglomeration:pooling_func 'median' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'passive_aggressive' -classifier:passive_aggressive:C '0.736502830586' -classifier:passive_aggressive:fit_intercept 'True' -classifier:passive_aggressive:loss 'hinge' -classifier:passive_aggressive:n_iter '116' -imputation:strategy 'most_frequent' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'extra_trees_preproc_for_classification' -preprocessor:extra_trees_preproc_for_classification:bootstrap 'True' -preprocessor:extra_trees_preproc_for_classification:criterion 'gini' -preprocessor:extra_trees_preproc_for_classification:max_depth 'None' -preprocessor:extra_trees_preproc_for_classification:max_features '3.59519496236' -preprocessor:extra_trees_preproc_for_classification:min_samples_leaf '6' -preprocessor:extra_trees_preproc_for_classification:min_samples_split '5' -preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf '0.0' -preprocessor:extra_trees_preproc_for_classification:n_estimators '100' -rescaling:choice 'normalize'" --initial-challengers " -balancing:strategy 'weighting' -classifier:choice 'liblinear_svc' -classifier:liblinear_svc:C '0.273249130804' -classifier:liblinear_svc:dual 'False' -classifier:liblinear_svc:fit_intercept 'True' -classifier:liblinear_svc:intercept_scaling '1' -classifier:liblinear_svc:loss 'squared_hinge' -classifier:liblinear_svc:multi_class 'ovr' -classifier:liblinear_svc:penalty 'l2' -classifier:liblinear_svc:tol '0.00750025466836' -imputation:strategy 'median' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'no_preprocessing' -rescaling:choice 'normalize'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'adaboost' -classifier:adaboost:algorithm 'SAMME' -classifier:adaboost:learning_rate '1.00811045165' -classifier:adaboost:max_depth '6' -classifier:adaboost:n_estimators '468' -imputation:strategy 'mean' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'liblinear_svc_preprocessor' -preprocessor:liblinear_svc_preprocessor:C '1.18284317259' -preprocessor:liblinear_svc_preprocessor:dual 'False' -preprocessor:liblinear_svc_preprocessor:fit_intercept 'True' -preprocessor:liblinear_svc_preprocessor:intercept_scaling '1' -preprocessor:liblinear_svc_preprocessor:loss 'squared_hinge' -preprocessor:liblinear_svc_preprocessor:multi_class 'ovr' -preprocessor:liblinear_svc_preprocessor:penalty 'l1' -preprocessor:liblinear_svc_preprocessor:tol '0.00227926069243' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'sgd' -classifier:sgd:alpha '8.4637990261e-06' -classifier:sgd:average 'True' -classifier:sgd:eta0 '0.0299104961513' -classifier:sgd:fit_intercept 'True' -classifier:sgd:l1_ratio '0.544995215291' -classifier:sgd:learning_rate 'optimal' -classifier:sgd:loss 'log' -classifier:sgd:n_iter '370' -classifier:sgd:penalty 'elasticnet' -imputation:strategy 'most_frequent' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'select_percentile_classification' -preprocessor:select_percentile_classification:percentile '71.667144562' -preprocessor:select_percentile_classification:score_func 'chi2' -rescaling:choice 'normalize'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'random_forest' -classifier:random_forest:bootstrap 'True' -classifier:random_forest:criterion 'gini' -classifier:random_forest:max_depth 'None' -classifier:random_forest:max_features '1.29449316402' -classifier:random_forest:max_leaf_nodes 'None' -classifier:random_forest:min_samples_leaf '11' -classifier:random_forest:min_samples_split '18' -classifier:random_forest:min_weight_fraction_leaf '0.0' -classifier:random_forest:n_estimators '100' -imputation:strategy 'mean' -one_hot_encoding:minimum_fraction '0.0010924728998' -one_hot_encoding:use_minimum_fraction 'True' -preprocessor:choice 'feature_agglomeration' -preprocessor:feature_agglomeration:affinity 'cosine' -preprocessor:feature_agglomeration:linkage 'complete' -preprocessor:feature_agglomeration:n_clusters '385' -preprocessor:feature_agglomeration:pooling_func 'max' -rescaling:choice 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier:choice 'adaboost' -classifier:adaboost:algorithm 'SAMME' -classifier:adaboost:learning_rate '1.23062080068' -classifier:adaboost:max_depth '6' -classifier:adaboost:n_estimators '499' -imputation:strategy 'median' -one_hot_encoding:use_minimum_fraction 'False' -preprocessor:choice 'extra_trees_preproc_for_classification' -preprocessor:extra_trees_preproc_for_classification:bootstrap 'True' -preprocessor:extra_trees_preproc_for_classification:criterion 'entropy' -preprocessor:extra_trees_preproc_for_classification:max_depth 'None' -preprocessor:extra_trees_preproc_for_classification:max_features '3.5347851525' -preprocessor:extra_trees_preproc_for_classification:min_samples_leaf '6' -preprocessor:extra_trees_preproc_for_classification:min_samples_split '8' -preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf '0.0' -preprocessor:extra_trees_preproc_for_classification:n_estimators '100' -rescaling:choice 'standardize'" [INFO] [2016-02-02 19:03:42,828:AutoML(1):aa6aede47b243ade0492c3bbad51d1ab] Start Ensemble with 3598.23sec time left [INFO] [2016-02-02 19:03:42,829:autosklearn.util.submit_process] Calling: runsolver --watcher-data /dev/null -W 3598 -d 5 python -m autosklearn.ensemble_selection_script --auto-sklearn-tmp-directory /tmp/autosklearn_tmp_32341_2124 --basename aa6aede47b243ade0492c3bbad51d1ab --task multiclass.classification --metric acc_metric --limit 3593.23100591 --output-directory /tmp/autosklearn_output_32341_2124 --ensemble-size 50 --ensemble-nbest 50 --auto-sklearn-seed 1 --max-iterations -1 --precision 32 /home/patrick/anaconda2/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:1136: RuntimeWarning: Degrees of freedom <= 0 for slice. warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning) /home/patrick/anaconda2/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:675: RuntimeWarning: Mean of empty slice
ValueError Traceback (most recent call last)
And this was the input (if it matters):
import autosklearn.classification import sklearn.datasets digits = sklearn.datasets.load_digits() X = digits.data y = digits.target import numpy as np
indices = np.arange(X.shape[0]) np.random.shuffle(indices) X = X[indices] y = y[indices] X_train = X[:1000] y_train = y[:1000] X_test = X[1000:] y_test = y[1000:]
automl = autosklearn.classification.AutoSklearnClassifier() automl.fit(X_train, y_train) print(automl.score(X_test,y_test))
Also unknown if you are still supporting ParamSklearn but I was having some trouble there too with importing random_sampler from HPOlibConfigSpace
(but no trouble importing hyperparameter or converters... just to check if I could import anything at all)
from HPOlibConfigSpace.random_sampler import RandomSampler
ImportError Traceback (most recent call last)
Ok for the first issue (no models selected)... i reinstalled anaconda and setup a new environment, purged openjdk and installed Oracle Java 1.8.0_71 and that seems to have done the trick... now I still get a runtime error that indicates mean of empty slice but the scoring function works with ~.978 accuracy
Good to hear that you solved it. This error can in general have two reasons:
Regarding the mean of empty slice, this did not yet lead to any problems. We already have an issue on the verboseness of auto-sklearn, but right now, there are more urgent things to be done.
Finally, we do not develop ParamSklearn any more, it is completely merged into autosklearn.pipeline. If you want to have an example of how to randomly sample configurations for the pipeline, please open an issue for that.
The new version of auto-sklearn mitigates installation problems like this and provides better error logging - if the problem still persists, please re-open this issue.
Greetings,
I tried to run the example from the README.md. All steps run without errors, until I try to score the test set. Then I get a ValueError: No models fitted!. The console output shows various runtime warnings, among them indications about missing files. What could be the cause?
(Unfortunately, github promptly refuses to accept a text file for some reason, so I pasted the console output during fitting and the error trace when trying to score below.)
My setup is a Python 2.7.6 virtualenv, running from IPython 4.0.0. The installed packages are as follows:
argparse (1.2.1) AutoSklearn (0.0.1.dev0) cma (1.1.06) decorator (4.0.2) funcsigs (0.4) HPOlib (0.1.0) HPOlibConfigSpace (0.1dev) ipython (4.0.0) ipython-genutils (0.1.0) liac-arff (2.1.0) lockfile (0.10.2) matplotlib (1.4.3) mock (1.3.0) networkx (1.10) nose (1.3.7) numpy (1.9.0) pandas (0.16.2) ParamSklearn (0.1dev) path.py (8.1.1) pbr (1.8.0) pexpect (3.3) pickleshare (0.5) pip (1.5.4) protobuf (3.0.0-alpha-1) psutil (3.2.1) pyMetaLearn (0.1dev) pymongo (3.0.3) pyparsing (2.0.3) python-dateutil (2.4.2) pytz (2015.6) PyYAML (3.11) scikit-learn (0.15.2) scipy (0.14.0) setuptools (18.3.2) simplegeneric (0.8.1) six (1.9.0) traitlets (4.0.0) wheel (0.24.0) wsgiref (0.1.2)
Thanks for your response.
Console output: [INFO] [09-24 17:58:47:AutoML_54da6690e2c896d2d9aafe349b066645_1]: Remaining time after reading 54da6690e2c896d2d9aafe349b066645 3600.00 sec /media/selects/venv/py27/local/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:1057: RuntimeWarning: Degrees of freedom <= 0 for slice. warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning) /media/selects/venv/py27/local/lib/python2.7/site-packages/numpy/lib/nanfunctions.py:598: RuntimeWarning: Mean of empty slice warnings.warn("Mean of empty slice", RuntimeWarning) [WARNING] [09-24 17:58:47:pyMetaLearn.input.aslib_simple]: Not found: /media/selects/venv/py27/local/lib/python2.7/site-packages/AutoSklearn-0.0.1.dev0-py2.7-linux-x86_64.egg/autosklearn/metalearni ng/files/multiclass.classification_dense_acc_metric/ground_truth.arff (maybe you want to add it) [WARNING] [09-24 17:58:47:pyMetaLearn.input.aslib_simple]: Not found: /media/selects/venv/py27/local/lib/python2.7/site-packages/AutoSklearn-0.0.1.dev0-py2.7-linux-x86_64.egg/autosklearn/metalearni ng/files/multiclass.classification_dense_acc_metric/citation.bib (maybe you want to add it) [WARNING] [09-24 17:58:47:pyMetaLearn.input.aslib_simple]: Not found: /media/selects/venv/py27/local/lib/python2.7/site-packages/AutoSklearn-0.0.1.dev0-py2.7-linux-x86_64.egg/autosklearn/metalearni ng/files/multiclass.classification_dense_acc_metric/cv.arff (maybe you want to add it) [INFO] [09-24 17:58:48:autosklearn.metalearning.metalearning]: Reading meta-data took 0.59 seconds ['133', '132', '131', '130', '137', '136', '135', '134', '139', '138', '24', '25', '26', '27', '20', '21', '22', '23', '28', '29', '4', '8', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '59', '58', '55', '54', '57', '56', '51', '50', '53', '52', '115', '114', '88', '89', '111', '110', '113', '112', '82', '83', '80', '81', '119', '118', '84', '85', '3', '7', '108', '1 09', '102', '103', '100', '101', '106', '107', '104', '105', '39', '38', '33', '32', '31', '30', '37', '36', '35', '34', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '2', '6', '99', '98', '91', '90', '93', '92', '95', '94', '97', '96', '11', '10', '13', '12', '15', '14', '17', '16', '19', '18', '117', '116', '41', '48', '49', '46', '86', '44', '45', '42', '43', '40', '87', '1' , '5', '9', '142', '140', '141', '77', '76', '75', '74', '73', '72', '71', '70', '79', '78', '47'] [WARNING] [09-24 17:58:48:pyMetaLearn.optimizers.metalearn_optimizer.metalearner]: Could not find runs for instance 1118_bac [WARNING] [09-24 17:58:48:pyMetaLearn.optimizers.metalearn_optimizer.metalearner]: Could not find runs for instance 314_bac [WARNING] [09-24 17:58:48:pyMetaLearn.optimizers.metalearn_optimizer.metalearner]: Could not find runs for instance 454_bac [WARNING] [09-24 17:58:48:pyMetaLearn.optimizers.metalearn_optimizer.metalearner]: Could not find runs for instance 809_bac [WARNING] [09-24 17:58:48:pyMetaLearn.optimizers.metalearn_optimizer.metalearner]: Could not find runs for instance 948_bac [WARNING] [09-24 17:58:48:pyMetaLearn.metalearning.kNearestDatasets.kND]: Found no best configuration for instance 1118_bac [WARNING] [09-24 17:58:48:pyMetaLearn.metalearning.kNearestDatasets.kND]: Found no best configuration for instance 948_bac [WARNING] [09-24 17:58:48:pyMetaLearn.metalearning.kNearestDatasets.kND]: Found no best configuration for instance 454_bac [WARNING] [09-24 17:58:48:pyMetaLearn.metalearning.kNearestDatasets.kND]: Found no best configuration for instance 809_bac [WARNING] [09-24 17:58:48:pyMetaLearn.metalearning.kNearestDatasets.kND]: Found no best configuration for instance 314_bac [INFO] [09-24 17:58:48:AutoML_54da6690e2c896d2d9aafe349b066645_1]: Time left for 54da6690e2c896d2d9aafe349b066645 after finding initial configurations: 3598.94sec Calling: smac --numRun 1 --scenario /tmp/autosklearn_tmp_14167_1103/54da6690e2c896d2d9aafe349b066645.scenario --initial-challengers " -balancing:strategy 'weighting' -classifier 'lda' -imputation:s trategy 'median' -kernel_pca:gamma '0.0290194572424' -kernel_pca:kernel 'rbf' -kernel_pca:n_components '1971' -lda:n_components '232' -lda:tol '0.000804876897084' -preprocessor 'kernel_pca' -rescal ing:strategy 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'libsvm_svc' -imputation:strategy 'median' -liblinear_svc_preprocessor:C '18592.5543358' -liblinear_svc_p reprocessor:class_weight 'auto' -liblinear_svc_preprocessor:dual 'False' -liblinear_svc_preprocessor:fit_intercept 'True' -liblinear_svc_preprocessor:intercept_scaling '1' -liblinear_svc_preprocess or:loss 'l2' -liblinear_svc_preprocessor:multi_class 'ovr' -liblinear_svc_preprocessor:penalty 'l2' -liblinear_svc_preprocessor:tol '0.040232270855' -libsvm_svc:C '6111.7121149' -libsvm_svc:class_w eight 'None' -libsvm_svc:coef0 '0.844884936773' -libsvm_svc:degree '5' -libsvm_svc:gamma '0.117882960246' -libsvm_svc:kernel 'poly' -libsvm_svc:max_iter '-1' -libsvm_svc:shrinking 'False' -libsvm_s vc:tol '0.00109298090501' -preprocessor 'liblinear_svc_preprocessor' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'liblinear_svc' -imputation:s trategy 'mean' -kernel_pca:gamma '1.6331524928' -kernel_pca:kernel 'rbf' -kernel_pca:n_components '761' -liblinear_svc:C '44.5016816038' -liblinear_svc:class_weight 'auto' -liblinear_svc:dual 'Fals e' -liblinear_svc:fit_intercept 'True' -liblinear_svc:intercept_scaling '1' -liblinear_svc:loss 'l2' -liblinear_svc:multi_class 'ovr' -liblinear_svc:penalty 'l2' -liblinear_svc:tol '0.0018788986680 6' -preprocessor 'kernel_pca' -rescaling:strategy 'normalize'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'libsvm_svc' -imputation:strategy 'mean' -libsvm_svc:C '50.8707992 587' -libsvm_svc:class_weight 'auto' -libsvm_svc:gamma '4.72168867253' -libsvm_svc:kernel 'rbf' -libsvm_svc:max_iter '-1' -libsvm_svc:shrinking 'True' -libsvm_svc:tol '1.67692533041e-05' -preproces sor 'select_rates' -rescaling:strategy 'normalize' -select_rates:alpha '0.318343160914' -select_rates:mode 'fdr' -select_rates:score_func 'f_classif'" --initial-challengers " -balancing:strategy 'n one' -classifier 'ridge' -imputation:strategy 'median' -kernel_pca:gamma '2.43149422021' -kernel_pca:kernel 'rbf' -kernel_pca:n_components '1194' -preprocessor 'kernel_pca' -rescaling:strategy 'nor malize' -ridge:alpha '1.30657587648e-05' -ridge:fit_intercept 'True' -ridge:tol '0.000760986834404'" --initial-challengers " -adaboost:algorithm 'SAMME.R' -adaboost:learning_rate '0.400363929326' - adaboost:max_depth '5' -adaboost:n_estimators '319' -balancing:strategy 'none' -classifier 'adaboost' -imputation:strategy 'most_frequent' -preprocessor 'no_preprocessing' -rescaling:strategy 'min/ max'" --initial-challengers " -balancing:strategy 'none' -classifier 'qda' -imputation:strategy 'mean' -pca:keep_variance '0.748479656855' -pca:whiten 'False' -preprocessor 'pca' -qda:reg_param '3. 82874880102' -qda:tol '0.0130621640728' -rescaling:strategy 'normalize'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'libsvm_svc' -imputation:strategy 'mean' -libsvm_svc:C ' 18807.7593252' -libsvm_svc:class_weight 'None' -libsvm_svc:gamma '0.940704535703' -libsvm_svc:kernel 'rbf' -libsvm_svc:max_iter '-1' -libsvm_svc:shrinking 'True' -libsvm_svc:tol '0.00148731196993' -preprocessor 'select_rates' -rescaling:strategy 'min/max' -select_rates:alpha '0.126666738937' -select_rates:mode 'fdr' -select_rates:score_func 'f_classif'" --initial-challengers " -balancing:str ategy 'weighting' -classifier 'lda' -imputation:strategy 'mean' -kitchen_sinks:gamma '1.48108179896' -kitchen_sinks:n_components '3450' -lda:n_components '25' -lda:tol '0.0426553560955' -preprocess or 'kitchen_sinks' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'random_forest' -feature_agglomeration:affinity 'manhattan' -feature_agglomerat ion:linkage 'average' -feature_agglomeration:n_clusters '76' -imputation:strategy 'median' -preprocessor 'feature_agglomeration' -random_forest:bootstrap 'True' -random_forest:criterion 'entropy' - random_forest:max_depth 'None' -random_forest:max_features '1.60908385606' -random_forest:max_leaf_nodes 'None' -random_forest:min_samples_leaf '2' -random_forest:min_samples_split '12' -random_for est:n_estimators '100' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier 'ridge' -imputation:strategy 'mean' -nystroem_sampler:coef0 '0.476829591723' -ny stroem_sampler:degree '3' -nystroem_sampler:gamma '0.0817500204362' -nystroem_sampler:kernel 'poly' -nystroem_sampler:n_components '7840' -preprocessor 'nystroem_sampler' -rescaling:strategy 'min/m ax' -ridge:alpha '3.52478796331e-06' -ridge:fit_intercept 'True' -ridge:tol '2.63925768895e-05'" --initial-challengers " -balancing:strategy 'none' -classifier 'random_forest' -imputation:strategy 'mean' -preprocessor 'no_preprocessing' -random_forest:bootstrap 'True' -random_forest:criterion 'gini' -random_forest:max_depth 'None' -random_forest:max_features '1.0' -random_forest:max_leaf_nod es 'None' -random_forest:min_samples_leaf '1' -random_forest:min_samples_split '2' -random_forest:n_estimators '100' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'none ' -classifier 'lda' -imputation:strategy 'median' -lda:n_components '203' -lda:tol '0.0935342136025' -preprocessor 'select_rates' -rescaling:strategy 'normalize' -select_rates:alpha '0.048178281695 5' -select_rates:mode 'fwe' -select_rates:score_func 'f_classif'" --initial-challengers " -balancing:strategy 'none' -classifier 'sgd' -imputation:strategy 'mean' -preprocessor 'no_preprocessing' - rescaling:strategy 'min/max' -sgd:alpha '0.0001' -sgd:eta0 '0.01' -sgd:fit_intercept 'True' -sgd:learning_rate 'optimal' -sgd:loss 'hinge' -sgd:n_iter '20' -sgd:penalty 'l2'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'liblinear_svc' -imputation:strategy 'mean' -kitchen_sinks:gamma '1.62106650658' -kitchen_sinks:n_components '6034' -liblinear_svc:C '780.976275468' -l iblinear_svc:class_weight 'auto' -liblinear_svc:dual 'False' -liblinear_svc:fit_intercept 'True' -liblinear_svc:intercept_scaling '1' -liblinear_svc:loss 'l2' -liblinear_svc:multi_class 'ovr' -libl inear_svc:penalty 'l2' -liblinear_svc:tol '2.60869016302e-05' -preprocessor 'kitchen_sinks' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'libsv m_svc' -feature_agglomeration:affinity 'manhattan' -feature_agglomeration:linkage 'average' -feature_agglomeration:n_clusters '89' -imputation:strategy 'most_frequent' -libsvm_svc:C '246.452178174' -libsvm_svc:class_weight 'auto' -libsvm_svc:gamma '0.0442300193285' -libsvm_svc:kernel 'rbf' -libsvm_svc:max_iter '-1' -libsvm_svc:shrinking 'False' -libsvm_svc:tol '0.0180487670379' -preprocessor 'feature_agglomeration' -rescaling:strategy 'standard'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'passive_aggresive' -imputation:strategy 'median' -passive_aggresive:C ' 1.31125616578' -passive_aggresive:fit_intercept 'True' -passive_aggresive:loss 'hinge' -passive_aggresive:n_iter '948' -preprocessor 'select_percentile_classification' -rescaling:strategy 'min/max' -select_percentile_classification:percentile '83.3669247487' -select_percentile_classification:score_func 'chi2'" --initial-challengers " -balancing:strategy 'none' -classifier 'sgd' -imputation:s trategy 'most_frequent' -preprocessor 'no_preprocessing' -rescaling:strategy 'min/max' -sgd:alpha '0.00292211727831' -sgd:epsilon '0.0116887099622' -sgd:eta0 '0.080560671307' -sgd:fit_intercept 'Tr ue' -sgd:learning_rate 'invscaling' -sgd:loss 'modified_huber' -sgd:n_iter '754' -sgd:penalty 'l1' -sgd:power_t '0.463498329665'" --initial-challengers " -balancing:strategy 'none' -classifier 'ran dom_forest' -imputation:strategy 'mean' -preprocessor 'select_rates' -random_forest:bootstrap 'False' -random_forest:criterion 'entropy' -random_forest:max_depth 'None' -random_forest:max_features '4.67839426105' -random_forest:max_leaf_nodes 'None' -random_forest:min_samples_leaf '10' -random_forest:min_samples_split '10' -random_forest:n_estimators '100' -rescaling:strategy 'standard' -sel ect_rates:alpha '0.167486470473' -select_rates:mode 'fdr' -select_rates:score_func 'f_classif'" --initial-challengers " -balancing:strategy 'none' -classifier 'sgd' -imputation:strategy 'most_frequ ent' -preprocessor 'select_rates' -rescaling:strategy 'min/max' -select_rates:alpha '0.155334914856' -select_rates:mode 'fpr' -select_rates:score_func 'f_classif' -sgd:alpha '6.49185336268e-05' -sg d:eta0 '0.0665593974375' -sgd:fit_intercept 'True' -sgd:learning_rate 'optimal' -sgd:loss 'log' -sgd:n_iter '189' -sgd:penalty 'l2'" --initial-challengers " -balancing:strategy 'weighting' -classif ier 'sgd' -imputation:strategy 'median' -preprocessor 'no_preprocessing' -rescaling:strategy 'min/max' -sgd:alpha '0.000134377776157' -sgd:epsilon '0.000256156800074' -sgd:eta0 '0.05222815237' -sgd :fit_intercept 'True' -sgd:learning_rate 'constant' -sgd:loss 'modified_huber' -sgd:n_iter '429' -sgd:penalty 'l1'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'passive_aggr esive' -imputation:strategy 'median' -liblinear_svc_preprocessor:C '0.306520222754' -liblinear_svc_preprocessor:class_weight 'None' -liblinear_svc_preprocessor:dual 'False' -liblinear_svc_preproces sor:fit_intercept 'True' -liblinear_svc_preprocessor:intercept_scaling '1' -liblinear_svc_preprocessor:loss 'l2' -liblinear_svc_preprocessor:multi_class 'ovr' -liblinear_svc_preprocessor:penalty 'l 2' -liblinear_svc_preprocessor:tol '4.83193374386e-05' -passive_aggresive:C '0.000522592495213' -passive_aggresive:fit_intercept 'True' -passive_aggresive:loss 'hinge' -passive_aggresive:n_iter '31 3' -preprocessor 'liblinear_svc_preprocessor' -rescaling:strategy 'min/max'" --initial-challengers " -balancing:strategy 'none' -classifier 'libsvm_svc' -imputation:strategy 'median' -libsvm_svc:C '19690.0557441' -libsvm_svc:class_weight 'None' -libsvm_svc:gamma '4.89593584562e-05' -libsvm_svc:kernel 'rbf' -libsvm_svc:max_iter '-1' -libsvm_svc:shrinking 'True' -libsvm_svc:tol '0.019646836528 3' -preprocessor 'random_trees_embedding' -random_trees_embedding:max_depth '4' -random_trees_embedding:max_leaf_nodes 'None' -random_trees_embedding:min_samples_leaf '16' -random_trees_embedding:m in_samples_split '9' -random_trees_embedding:n_estimators '52' -rescaling:strategy 'standard'" --initial-challengers " -balancing:strategy 'none' -classifier 'sgd' -imputation:strategy 'mean' -prep rocessor 'no_preprocessing' -rescaling:strategy 'min/max' -sgd:alpha '0.0001' -sgd:eta0 '0.01' -sgd:fit_intercept 'True' -sgd:learning_rate 'optimal' -sgd:loss 'hinge' -sgd:n_iter '20' -sgd:penalty 'l2'" --initial-challengers " -balancing:strategy 'weighting' -classifier 'random_forest' -extra_trees_preproc_for_classification:bootstrap 'True' -extra_trees_preproc_for_classification:criterion 'entropy' -extra_trees_preproc_for_classification:max_depth 'None' -extra_trees_preproc_for_classification:max_features '3.61796566599' -extra_trees_preproc_for_classification:min_samples_leaf '6' -extra_trees_preproc_for_classification:min_samples_split '2' -extra_trees_preproc_for_classification:n_estimators '100' -imputation:strategy 'mean' -preprocessor 'extra_trees_preproc_for_classifi cation' -random_forest:bootstrap 'True' -random_forest:criterion 'entropy' -random_forest:max_depth 'None' -random_forest:max_features '0.857466092817' -random_forest:max_leafnodes 'None' -random forest:min_samples_leaf '14' -random_forest:min_samples_split '15' -random_forest:n_estimators '100' -rescaling:strategy 'normalize'" Calling: runsolver --watcher-data /dev/null -W 3598 -d 5 python /media/selects/venv/py27/local/lib/python2.7/site-packages/AutoSklearn-0.0.1.dev0-py2.7-linux-x86_64.egg/autosklearn/ensemble_selecti on_script.py /tmp/autosklearn_tmp_14167_1103 54da6690e2c896d2d9aafe349b066645 multiclass.classification acc_metric 3593.92797899 /tmp/autosklearn_output_14167_1103 50 1 /tmp/autosklearn_tmp_14167_1 103/ensemble_indices_1