Open jasmainak opened 1 year ago
cross posting from the forum:
https://mne.discourse.group/t/including-bad-channels-in-autoreject/7369/4
# set parameters for autoreject n_interpolates = np.array((1, 2, 3, 5, 7, 9)) consensus_percs = np.linspace(0.2, 0.7, 11) # init autoreject object, picks are grads or mags respectively rej = AutoReject(n_interpolates, consensus_percs, picks=picks, thresh_method='bayesian_optimization') # run the autoreject (local) algorithm rej.fit(epochs) # extract the log file rej_log = rej.get_reject_log(epochs) # plot xlabels = reject_log.ch_names image = reject_log.labels image[image == 2] = 0.5 # move interp to 0.5 legend_label = {0: 'good', 0.5: 'interpolated', 1: 'bad'} cmap = colors.ListedColormap(['white', 'blue', 'red']) img = axes.imshow(image.T, cmap=cmap, vmin=0, vmax=1, interpolation='none') plt.setp(axes, yticks=range(0, len(xlabels)), yticklabels=xlabels) plt.setp(axes.get_yticklabels(), fontsize=2) #add red box around rejected epochs for idx in np.where(reject_log.bad_epochs)[0]: axes.add_patch(patches.Rectangle((idx - 0.5, -0.5), 1, len(xlabels), linewidth=1, edgecolor='r', facecolor='none'))
I would have to dig into it at a calmer moment ... in the meanwhile, I wouldn't mind if someone beat me to it
cross posting from the forum:
https://mne.discourse.group/t/including-bad-channels-in-autoreject/7369/4
I would have to dig into it at a calmer moment ... in the meanwhile, I wouldn't mind if someone beat me to it