Open hovey opened 2 days ago
For a quadtree with a cell that contains two points, the maximum level $h$ of the quadtree is known. (See proof: https://youtu.be/Ac47eHdSZuE?si=rM5Zie3K_07I4hmO&t=750)
Then, $c \leq c_{\max}$, thus
$c \leq \sqrt{2} \left( s / 2^h \right) $
$\frac{c}{s \sqrt{2}} \leq 0.5^h $
let $L = \frac{c}{s \sqrt{2}}$
$\ln(L) \leq h \ln(0.5)$
$h \leq \frac{\ln(L)}{\ln(0.5)}$
Example, let $s = 1$ and $c = \sqrt{2}/4$, then $L = \frac{1}{4}$ and
$h \leq \frac{\ln(0.25)}{\ln(0.5)}$
$h \leq 2$
Finding neighbors:
Balanced quad trees:
Neighbor finding: https://faculty.sites.iastate.edu/jia/files/inline-files/29.%20quadtrees.pdf page 76/111
Balancing algorithm, https://faculty.sites.iastate.edu/jia/files/inline-files/29.%20quadtrees.pdf page 95/111
https://youtu.be/Ac47eHdSZuE
See also slides https://i11www.iti.kit.edu/_media/teaching/winter2015/compgeom/algogeom-ws15-vl11-printable.pdf