avr-llvm / llvm

[MERGED UPSTREAM] AVR backend for the LLVM compiler library
220 stars 21 forks source link

invalid operand for instruction #45

Closed 4ntoine closed 9 years ago

4ntoine commented 9 years ago

MBA-Anton:bin asmirnov$ ./clang -c -g -Os -Wall -ffunction-sections -fdata-sections -mmcu=atmega328p -DF_CPU=16000000L -MMD -DUSB_VID=null -DUSB_PID=null -DARDUINO=105 -I/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino -I/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/variants/standard -I/Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/avr/include --target=avr /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/wiring.c -o /tmp/arduino_test1/wiring.c.o

In file included from /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/wiring.c:25:
In file included from /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/wiring_private.h:30:
/Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/avr/include/stdio.h:724:12: warning: 
      declaration of built-in function 'fprintf' requires inclusion of the header <stdio.h>
      [-Wbuiltin-requires-header]
extern int      fprintf(FILE *__stream, const char *__fmt, ...);
                ^
/Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/avr/include/stdio.h:875:12: warning: 
      declaration of built-in function 'vfscanf' requires inclusion of the header <stdio.h>
      [-Wbuiltin-requires-header]
extern int      vfscanf(FILE *__stream, const char *__fmt, va_list __ap);
                ^
/Applications/Arduino.app/Contents/Resources/Java/hardware/tools/avr/avr/include/stdio.h:888:12: warning: 
      declaration of built-in function 'fscanf' requires inclusion of the header <stdio.h>
      [-Wbuiltin-requires-header]
extern int      fscanf(FILE *__stream, const char *__fmt, ...);
                ^
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/wiring.c:185:3: error: invalid
      operand for instruction
                "1: sbiw %0,1" "\n\t" // 2 cycles
                ^
<inline asm>:1:10: note: instantiated into assembly here
        1: sbiw r24,1
                ^
/Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/wiring.c:185:21: error: 
      unexpected token in argument list
                "1: sbiw %0,1" "\n\t" // 2 cycles
                                  ^
<inline asm>:2:8: note: instantiated into assembly here
        brne 1b
              ^
3 warnings and 2 errors generated.
4ntoine commented 9 years ago

error code (asm):

// busy wait
    __asm__ __volatile__ (
        "1: sbiw %0,1" "\n\t" // 2 cycles
        "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
    );
4ntoine commented 9 years ago

full code (wiring.c):

/*
  wiring.c - Partial implementation of the Wiring API for the ATmega8.
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2005-2006 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA

  $Id$
*/

#include "wiring_private.h"

// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))

// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)

// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)

volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;

#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
    // copy these to local variables so they can be stored in registers
    // (volatile variables must be read from memory on every access)
    unsigned long m = timer0_millis;
    unsigned char f = timer0_fract;

    m += MILLIS_INC;
    f += FRACT_INC;
    if (f >= FRACT_MAX) {
        f -= FRACT_MAX;
        m += 1;
    }

    timer0_fract = f;
    timer0_millis = m;
    timer0_overflow_count++;
}

unsigned long millis()
{
    unsigned long m;
    uint8_t oldSREG = SREG;

    // disable interrupts while we read timer0_millis or we might get an
    // inconsistent value (e.g. in the middle of a write to timer0_millis)
    cli();
    m = timer0_millis;
    SREG = oldSREG;

    return m;
}

unsigned long micros() {
    unsigned long m;
    uint8_t oldSREG = SREG, t;

    cli();
    m = timer0_overflow_count;
#if defined(TCNT0)
    t = TCNT0;
#elif defined(TCNT0L)
    t = TCNT0L;
#else
    #error TIMER 0 not defined
#endif

#ifdef TIFR0
    if ((TIFR0 & _BV(TOV0)) && (t < 255))
        m++;
#else
    if ((TIFR & _BV(TOV0)) && (t < 255))
        m++;
#endif

    SREG = oldSREG;

    return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}

void delay(unsigned long ms)
{
    uint16_t start = (uint16_t)micros();

    while (ms > 0) {
        if (((uint16_t)micros() - start) >= 1000) {
            ms--;
            start += 1000;
        }
    }
}

/* Delay for the given number of microseconds.  Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
    // calling avrlib's delay_us() function with low values (e.g. 1 or
    // 2 microseconds) gives delays longer than desired.
    //delay_us(us);
#if F_CPU >= 20000000L
    // for the 20 MHz clock on rare Arduino boards

    // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
    // of the function call yields a delay of exactly a one microsecond.
    __asm__ __volatile__ (
        "nop" "\n\t"
        "nop"); //just waiting 2 cycle
    if (--us == 0)
        return;

    // the following loop takes a 1/5 of a microsecond (4 cycles)
    // per iteration, so execute it five times for each microsecond of
    // delay requested.
    us = (us<<2) + us; // x5 us

    // account for the time taken in the preceeding commands.
    us -= 2;

#elif F_CPU >= 16000000L
    // for the 16 MHz clock on most Arduino boards

    // for a one-microsecond delay, simply return.  the overhead
    // of the function call yields a delay of approximately 1 1/8 us.
    if (--us == 0)
        return;

    // the following loop takes a quarter of a microsecond (4 cycles)
    // per iteration, so execute it four times for each microsecond of
    // delay requested.
    us <<= 2;

    // account for the time taken in the preceeding commands.
    us -= 2;
#else
    // for the 8 MHz internal clock on the ATmega168

    // for a one- or two-microsecond delay, simply return.  the overhead of
    // the function calls takes more than two microseconds.  can't just
    // subtract two, since us is unsigned; we'd overflow.
    if (--us == 0)
        return;
    if (--us == 0)
        return;

    // the following loop takes half of a microsecond (4 cycles)
    // per iteration, so execute it twice for each microsecond of
    // delay requested.
    us <<= 1;

    // partially compensate for the time taken by the preceeding commands.
    // we can't subtract any more than this or we'd overflow w/ small delays.
    us--;
#endif

    // busy wait
    __asm__ __volatile__ (
        "1: sbiw %0,1" "\n\t" // 2 cycles
        "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
    );

}

void init()
{
    // this needs to be called before setup() or some functions won't
    // work there
    sei();

    // on the ATmega168, timer 0 is also used for fast hardware pwm
    // (using phase-correct PWM would mean that timer 0 overflowed half as often
    // resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
    sbi(TCCR0A, WGM01);
    sbi(TCCR0A, WGM00);
#endif  

    // set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
    // CPU specific: different values for the ATmega128
    sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
    // this combination is for the standard atmega8
    sbi(TCCR0, CS01);
    sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
    // this combination is for the standard 168/328/1280/2560
    sbi(TCCR0B, CS01);
    sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
    // this combination is for the __AVR_ATmega645__ series
    sbi(TCCR0A, CS01);
    sbi(TCCR0A, CS00);
#else
    #error Timer 0 prescale factor 64 not set correctly
#endif

    // enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
    sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
    sbi(TIMSK0, TOIE0);
#else
    #error  Timer 0 overflow interrupt not set correctly
#endif

    // timers 1 and 2 are used for phase-correct hardware pwm
    // this is better for motors as it ensures an even waveform
    // note, however, that fast pwm mode can achieve a frequency of up
    // 8 MHz (with a 16 MHz clock) at 50% duty cycle

#if defined(TCCR1B) && defined(CS11) && defined(CS10)
    TCCR1B = 0;

    // set timer 1 prescale factor to 64
    sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
    sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
    sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
    sbi(TCCR1, CS10);
#endif
#endif
    // put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
    sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
    #warning this needs to be finished
#endif

    // set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
    sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
    sbi(TCCR2B, CS22);
#else
    #warning Timer 2 not finished (may not be present on this CPU)
#endif

    // configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
    sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
    sbi(TCCR2A, WGM20);
#else
    #warning Timer 2 not finished (may not be present on this CPU)
#endif

#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
    sbi(TCCR3B, CS31);      // set timer 3 prescale factor to 64
    sbi(TCCR3B, CS30);
    sbi(TCCR3A, WGM30);     // put timer 3 in 8-bit phase correct pwm mode
#endif

#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
    sbi(TCCR4B, CS42);      // set timer4 prescale factor to 64
    sbi(TCCR4B, CS41);
    sbi(TCCR4B, CS40);
    sbi(TCCR4D, WGM40);     // put timer 4 in phase- and frequency-correct PWM mode 
    sbi(TCCR4A, PWM4A);     // enable PWM mode for comparator OCR4A
    sbi(TCCR4C, PWM4D);     // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
    sbi(TCCR4B, CS41);      // set timer 4 prescale factor to 64
    sbi(TCCR4B, CS40);
    sbi(TCCR4A, WGM40);     // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */   

#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
    sbi(TCCR5B, CS51);      // set timer 5 prescale factor to 64
    sbi(TCCR5B, CS50);
    sbi(TCCR5A, WGM50);     // put timer 5 in 8-bit phase correct pwm mode
#endif

#if defined(ADCSRA)
    // set a2d prescale factor to 128
    // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
    // XXX: this will not work properly for other clock speeds, and
    // this code should use F_CPU to determine the prescale factor.
    sbi(ADCSRA, ADPS2);
    sbi(ADCSRA, ADPS1);
    sbi(ADCSRA, ADPS0);

    // enable a2d conversions
    sbi(ADCSRA, ADEN);
#endif

    // the bootloader connects pins 0 and 1 to the USART; disconnect them
    // here so they can be used as normal digital i/o; they will be
    // reconnected in Serial.begin()
#if defined(UCSRB)
    UCSRB = 0;
#elif defined(UCSR0B)
    UCSR0B = 0;
#endif
}
dylanmckay commented 9 years ago

Error can be more easily reproduced with this assembly snippet:

main.s:

1: sbiw r28, 24

; jump to label '1'
brne 1b

With the command line

llvm-mc -arch=avr -filetype=obj main.s

Tested with revision a986ebcbbc3d3ae82d3f4a71e1d07f086bed6b82

dylanmckay commented 9 years ago

There are two errors:

dylanmckay commented 9 years ago

Both of these issues were caused by #53. The explanation is duplicated here:

The problem lies in AVRAsmParser.cpp:466.

Whenever we try and parse an operand, we first check if it is a valid register. If it is, then we treat it as such. For situations like sbiw X, 24, X is parsed into a MCOperand of type register, and then we get to 24 (which is a valid register, our code currently allows 31 instead of r31 currently -- perhaps this is in error). 24 is parsed into an MCOperand of type register, even though it is not a register. We still get the correct output, however.

In the case of local labels, they are automatically taken to be registers. Because of this, the correct branch (in the else block) is not executed, and MCParser.parseExpression() doesn't handle it. MCParser.parseExpression() has code to handle a trailing b or f.

There is an ambiguity when parsing integer operands without context, because AVR-GCC supports specifiying register names (r12) and register numbers (12) interchangeably. Without context, we can't tell the difference.

There are two solutions:

We dropped support for numbered registers, and now the problem is solved.