aws-neuron / aws-neuron-sdk

Powering AWS purpose-built machine learning chips. Blazing fast and cost effective, natively integrated into PyTorch and TensorFlow and integrated with your favorite AWS services
https://aws.amazon.com/machine-learning/neuron/
Other
468 stars 154 forks source link

Internal tensorizer error when trying to compile and train a simple CNN #881

Open sgaseretto opened 7 months ago

sgaseretto commented 7 months ago

I replaced the MLP from this example with a CNN and I'm getting a Internal tensorizer error when trying to run it. Here are the scripts:

model.py:

import torch
import torch.nn as nn
import torch.nn.functional as F

# Declare 3-layer MLP for MNIST dataset
class MLP(nn.Module):
  def __init__(self, input_size = 28 * 28, output_size = 10, layers = [120, 84]):
      super(MLP, self).__init__()
      self.fc1 = nn.Linear(input_size, layers[0])
      self.fc2 = nn.Linear(layers[0], layers[1])
      self.fc3 = nn.Linear(layers[1], output_size)

  def forward(self, x):
      x = F.relu(self.fc1(x))
      x = F.relu(self.fc2(x))
      x = self.fc3(x)
      return F.log_softmax(x, dim=1)

 # PyTorch models inherit from torch.nn.Module
class CnnClassifier(nn.Module):
    def __init__(self):
        super(CnnClassifier, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

train_xmp.py:

import os
import time
import torch
from model import MLP, CnnClassifier

from torchvision.datasets import mnist
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor

# XLA imports
import torch_xla.core.xla_model as xm
# XLA imports for parallel loader and multi-processing
import torch_xla.distributed.parallel_loader as pl
import torch_xla.distributed.xla_multiprocessing as xmp
from torch.utils.data.distributed import DistributedSampler

# Global constants
EPOCHS = 4
WARMUP_STEPS = 2
BATCH_SIZE = 32
# MODEL_ARCHITECTURE = 'mlp' 
MODEL_ARCHITECTURE = 'cnn' 

# Load MNIST train dataset
train_dataset = mnist.MNIST(root='./MNIST_DATA_train',
                            train=True, download=True, transform=ToTensor())

def main(index):
    # torch.set_default_tensor_type('torch.FloatTensor')
    # XLA MP: get world size
    world_size = xm.xrt_world_size()
    # multi-processing: ensure each worker has same initial weights
    torch.manual_seed(0)
    # Move model to device and declare optimizer and loss function
    device = 'xla'
    model = MLP().to(device) if MODEL_ARCHITECTURE == 'mlp' else CnnClassifier().to(device)
    # For multiprocessing, scale up learning rate
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01 * world_size)
    loss_fn = torch.nn.NLLLoss() if MODEL_ARCHITECTURE == 'mlp' else torch.nn.CrossEntropyLoss()

    # Prepare data loader
    train_sampler = None
    if world_size > 1:
        train_sampler = DistributedSampler(train_dataset,
                                           num_replicas=world_size,
                                           rank=xm.get_ordinal(),
                                           shuffle=True)
    train_loader = DataLoader(train_dataset,
                              batch_size=BATCH_SIZE,
                              sampler=train_sampler,
                              shuffle=False if train_sampler else True)
    # XLA MP: use MpDeviceLoader from torch_xla.distributed
    train_device_loader = pl.MpDeviceLoader(train_loader, device)

    # Run the training loop
    print(f'----------Training {MODEL_ARCHITECTURE}---------------')
    model.train()
    for epoch in range(EPOCHS):
        start = time.time()
        for idx, (train_x, train_label) in enumerate(train_device_loader):
            optimizer.zero_grad()
            if MODEL_ARCHITECTURE == 'mlp':
                train_x = train_x.view(train_x.size(0), -1)
            train_x = train_x.to(device)
            output = model(train_x)
            loss = loss_fn(output, train_label)
            loss.backward()
            xm.optimizer_step(optimizer) # XLA MP: performs grad allreduce and optimizer step
            if idx < WARMUP_STEPS: # skip warmup iterations
                start = time.time()

    # Compute statistics for the last epoch
    interval = idx - WARMUP_STEPS # skip warmup iterations
    throughput = interval / (time.time() - start)
    print("Train throughput (iter/sec): {}".format(throughput))
    print("Final loss is {:0.4f}".format(loss.detach().to('cpu')))

    # Save checkpoint for evaluation (xm.save ensures only one process save)
    os.makedirs("checkpoints", exist_ok=True)
    checkpoint = {'state_dict': model.state_dict()}
    xm.save(checkpoint,'checkpoints/checkpoint.pt')

    print('----------End Training ---------------')

if __name__ == '__main__':
    xmp.spawn(main)

When executing it with python train_xmp.py I get this error log:

WARNING:root:MASTER_ADDR not setting, defaulting to localhost
----------Training cnn---------------
2024-04-30 21:07:46.000985:  136004  INFO ||NEURON_CACHE||: Compile cache path: /var/tmp/neuron-compile-cache
2024-04-30 21:07:46.000986:  136004  ERROR ||NEURON_CC_WRAPPER||: Got a cached failed neff at /var/tmp/neuron-compile-cache/neuronxcc-2.13.72.0+78a426937/MODULE_13170552691779535425+d41d8cd9/model.neff. Will skip compilation, please set --retry_failed_compilation for recompilation: 
 Failed compilation with ['neuronx-cc', 'compile', '--target=trn1', '--framework=XLA', '/tmp/ubuntu/neuroncc_compile_workdir/0a25a9a8-cf7f-4aa9-a289-7feed2d422d2/model.MODULE_13170552691779535425+d41d8cd9.hlo_module.pb', '--output', '/tmp/ubuntu/neuroncc_compile_workdir/0a25a9a8-cf7f-4aa9-a289-7feed2d422d2/model.MODULE_13170552691779535425+d41d8cd9.neff', '--verbose=35']: 2024-04-30T20:50:00Z [TEN404] Internal tensorizer error - Please open a support ticket at https://github.com/aws-neuron/aws-neuron-sdk/issues/new
.
2024-04-30 21:07:47.013728: F ./torch_xla/csrc/runtime/debug_macros.h:20] Non-OK-status: status.status() status: INTERNAL: RunNeuronCCImpl: error condition error != 0: <class 'subprocess.CalledProcessError'>: Command '' died with <Signals.SIGHUP: 1>.
*** Begin stack trace ***
    tsl::CurrentStackTrace()
    std::unique_ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::PjRtLoadedExecutable> > ConsumeValue<std::unique_ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::PjRtLoadedExecutable> > >(absl::lts_20230125::StatusOr<std::unique_ptr<xla::PjRtLoadedExecutable, std::default_delete<xla::PjRtLoadedExecutable> > >&&)
    torch_xla::runtime::PjRtComputationClient::Compile(std::vector<torch_xla::runtime::ComputationClient::CompileInstance, std::allocator<torch_xla::runtime::ComputationClient::CompileInstance> >)
    torch_xla::XLAGraphExecutor::Compile(std::vector<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> >, std::allocator<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> > > > const&, absl::lts_20230125::Span<std::string const>, torch::lazy::LazyGraphExecutor::SyncTensorCollection const&, torch::lazy::LazyGraphExecutor::PostOrderData*, std::vector<torch::lazy::Value, std::allocator<torch::lazy::Value> > const&)
    torch_xla::XLAGraphExecutor::SyncTensorsGraphInternal(std::vector<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> >, std::allocator<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> > > >*, absl::lts_20230125::Span<std::string const>, torch::lazy::LazyGraphExecutor::SyncTensorsConfig const&, bool)
    torch_xla::XLAGraphExecutor::SyncTensorsGraph(std::vector<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> >, std::allocator<c10::intrusive_ptr<torch_xla::XLATensor, c10::detail::intrusive_target_default_null_type<torch_xla::XLATensor> > > >*, absl::lts_20230125::Span<std::string const>, bool, bool, bool)
    torch_xla::XLAGraphExecutor::SyncLiveTensorsGraph(torch::lazy::BackendDevice const*, c10::ArrayRef<std::string>, bool)

    PyCFunction_Call
    _PyObject_MakeTpCall
    _PyEval_EvalFrameDefault

    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall

    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    PyObject_Call
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall

    PyObject_Call

    _PyObject_MakeTpCall
    _PyEval_EvalFrameDefault
    _PyEval_EvalCodeWithName
    _PyFunction_Vectorcall
    PyObject_Call
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    PyObject_Call
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall
    _PyEval_EvalFrameDefault
    _PyFunction_Vectorcall

    PyObject_Call

    clone
*** End stack trace ***

Traceback (most recent call last):
  File "train_xmp.py", line 86, in <module>
    xmp.spawn(main)
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/runtime.py", line 82, in wrapper
    return fn(*args, **kwargs)
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 38, in spawn
    return pjrt.spawn(fn, nprocs, start_method, args)
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/_internal/pjrt.py", line 202, in spawn
    run_multiprocess(spawn_fn, start_method=start_method)
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/runtime.py", line 82, in wrapper
    return fn(*args, **kwargs)
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/_internal/pjrt.py", line 159, in run_multiprocess
    replica_results = list(
  File "/home/ubuntu/aws_neuronx_venv_pytorch/lib/python3.8/site-packages/torch_xla/_internal/pjrt.py", line 160, in <genexpr>
    itertools.chain.from_iterable(
  File "/usr/lib/python3.8/concurrent/futures/process.py", line 484, in _chain_from_iterable_of_lists
    for element in iterable:
  File "/usr/lib/python3.8/concurrent/futures/_base.py", line 619, in result_iterator
    yield fs.pop().result()
  File "/usr/lib/python3.8/concurrent/futures/_base.py", line 444, in result
    return self.__get_result()
  File "/usr/lib/python3.8/concurrent/futures/_base.py", line 389, in __get_result
    raise self._exception
concurrent.futures.process.BrokenProcessPool: A process in the process pool was terminated abruptly while the future was running or pending.

This are my packages version:

aws-neuronx-runtime-discovery==2.9
libneuronxla==2.0.965
neuronx-cc==2.13.72.0+78a426937
torch==2.1.2
torch-neuronx==2.1.2.2.1.0
torch-xla==2.1.2
torchvision==0.16.2

I don't think I'm using something that is not supported since this is basically the CNN used in Pytorch's FashionMNIST example.

aws-rhsoln commented 7 months ago

Thank you for reporting the issue. We are able to reproduce the issue and have started looking into it.

sgaseretto commented 7 months ago

Also the same issue when modifying the train_xmp.py to train the same CNN

wolanlu commented 6 months ago

Run into the same issue - seems like it only compiles for batch_size = 25 (and multiple of 25) which somehow corresponds to 5x5 conv region