aws / sagemaker-mxnet-training-toolkit

Toolkit for running MXNet training scripts on SageMaker. Dockerfiles used for building SageMaker MXNet Containers are at https://github.com/aws/deep-learning-containers.
Apache License 2.0
60 stars 55 forks source link

skip on ImportError #152

Closed danabens closed 4 years ago

danabens commented 4 years ago

fix BaseDLContainer-MXNet-Training pipeline

============================= test session starts ==============================
platform linux2 -- Python 2.7.12, pytest-4.5.0, py-1.8.1, pluggy-0.11.0 -- /usr/bin/python
cachedir: .pytest_cache
rootdir: /home/ubuntu/src/container_tests/sagemaker-mxnet-container, inifile: setup.cfg
plugins: requests-mock-1.7.0, xdist-1.31.0, rerunfailures-8.0, forked-1.1.3, cov-2.8.1
collecting ... 
collected 9 items                                                              

test/integration/sagemaker/test_dgl.py::test_dgl_training[py3-cpu] PASSED [ 11%]
test/integration/sagemaker/test_experiments.py::test_training[1-py3-cpu] FAILED [ 22%]
test/integration/sagemaker/test_training.py::test_training[1-py3-cpu] PASSED [ 33%]
test/integration/sagemaker/test_training_smdebug.py::test_training[1-py3-cpu] PASSED [ 44%]
test/integration/sagemaker/test_gluonnlp.py::test_nlp_training[py3-cpu] PASSED [ 55%]
test/integration/sagemaker/test_tuning.py::test_tuning[py3-cpu] PASSED   [ 66%]
test/integration/sagemaker/test_experiments.py::test_training[2-py3-cpu] FAILED [ 77%]
test/integration/sagemaker/test_training.py::test_training[2-py3-cpu] PASSED [ 88%]
test/integration/sagemaker/test_training_smdebug.py::test_training[2-py3-cpu] PASSED [100%]

=================================== FAILURES ===================================
___________________________ test_training[1-py3-cpu] ___________________________

sagemaker_session = <sagemaker.session.Session object at 0x7f2437e5ea10>
ecr_image = '841569659894.dkr.ecr.us-east-1.amazonaws.com/beta-mxnet-training:1.6.0-py3-gpu-with-horovod-build'
instance_type = 'ml.p2.16xlarge', instance_count = 1

    @pytest.mark.skip_py2_containers
    def test_training(sagemaker_session, ecr_image, instance_type, instance_count):

>       from smexperiments.experiment import Experiment
E       ImportError: No module named smexperiments.experiment

test/integration/sagemaker/test_experiments.py:33: ImportError
___________________________ test_training[2-py3-cpu] ___________________________

sagemaker_session = <sagemaker.session.Session object at 0x7f2437e5ea10>
ecr_image = '841569659894.dkr.ecr.us-east-1.amazonaws.com/beta-mxnet-training:1.6.0-py3-gpu-with-horovod-build'
instance_type = 'ml.p2.16xlarge', instance_count = 2

    @pytest.mark.skip_py2_containers
    def test_training(sagemaker_session, ecr_image, instance_type, instance_count):

>       from smexperiments.experiment import Experiment
E       ImportError: No module named smexperiments.experiment

test/integration/sagemaker/test_experiments.py:33: ImportError
=============================== warnings summary ===============================
/usr/local/lib/python2.7/dist-packages/_pytest/mark/structures.py:324
  /usr/local/lib/python2.7/dist-packages/_pytest/mark/structures.py:324: PytestUnknownMarkWarning: Unknown pytest.mark.skip_py2_containers - is this a typo?  You can register custom marks to avoid this warning - for details, see https://docs.pytest.org/en/latest/mark.html
    PytestUnknownMarkWarning,

/usr/local/lib/python2.7/dist-packages/_pytest/mark/structures.py:324
  /usr/local/lib/python2.7/dist-packages/_pytest/mark/structures.py:324: PytestUnknownMarkWarning: Unknown pytest.mark.skip_test_in_region - is this a typo?  You can register custom marks to avoid this warning - for details, see https://docs.pytest.org/en/latest/mark.html
    PytestUnknownMarkWarning,

-- Docs: https://docs.pytest.org/en/latest/warnings.html
============== 2 failed, 7 passed, 2 warnings in 3209.82 seconds ===============
sagemaker-bot commented 4 years ago

AWS CodeBuild CI Report

Powered by github-codebuild-logs, available on the AWS Serverless Application Repository

sagemaker-bot commented 4 years ago

AWS CodeBuild CI Report

Powered by github-codebuild-logs, available on the AWS Serverless Application Repository

sagemaker-bot commented 4 years ago

AWS CodeBuild CI Report

Powered by github-codebuild-logs, available on the AWS Serverless Application Repository