Thanks for sharing amazing project.
I tried to run the first example provided in the README, by calling import datawig I just get errors.
AttributeError Traceback (most recent call last)
in
----> 1 import datawig
2
3 df = datawig.utils.generate_df_string(num_samples=200, data_column_name='sentences', label_column_name='label')
4 df_train, df_test = datawig.utils.random_split(df)
5
~/Development/repos/AWS/MBA/datawig/datawig/__init__.py in
1 # makes the column encoders available as e.g. `from datawig import CategoricalEncoder`
----> 2 from .column_encoders import CategoricalEncoder, BowEncoder, NumericalEncoder, SequentialEncoder
3 from .mxnet_input_symbols import BowFeaturizer, LSTMFeaturizer, NumericalFeaturizer, EmbeddingFeaturizer
4 from .simple_imputer import SimpleImputer
5 from .imputer import Imputer
~/Development/repos/AWS/MBA/datawig/datawig/column_encoders.py in
30 from sklearn.preprocessing import StandardScaler
31
---> 32 from .utils import logger
33
34 random.seed(0)
~/Development/repos/AWS/MBA/datawig/datawig/utils.py in
32 import pandas as pd
33
---> 34 mx.random.seed(1)
35 random.seed(1)
36 np.random.seed(42)
AttributeError: module 'mxnet' has no attribute 'random'
--------
Should I setup any conda env. for specific version of mxnet?
Thanks for sharing amazing project. I tried to run the first example provided in the README, by calling
import datawig
I just get errors.AttributeError Traceback (most recent call last)