axolotl-ai-cloud / axolotl

Go ahead and axolotl questions
https://axolotl-ai-cloud.github.io/axolotl/
Apache License 2.0
7.93k stars 872 forks source link

(OOM) FSDP+QLora 2*RTX3090 (24G per card) finetuning on 70b Llama2 #1522

Open yaohwang opened 7 months ago

yaohwang commented 7 months ago

Please check that this issue hasn't been reported before.

Expected Behavior

expecting no OOM.

with #1494 fixed, I've been tested that 7b Llama works right now with FSDP+QLora on axolotl.

but FSDP+QLora of Answer.AI worked with 70b Llama which I've been tested (with the same 2*RTX3090), so I'm expecting this work with axolotl's FSDP+QLora too.

Current behaviour

Traceback (most recent call last): File "/root/miniconda3/envs/py3.10/lib/python3.10/runpy.py", line 196, in _run_module_as_main Traceback (most recent call last): File "/root/miniconda3/envs/py3.10/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/root/miniconda3/envs/py3.10/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/workspace/axolotl/src/axolotl/cli/train.py", line 59, in fire.Fire(do_cli) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 143, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 477, in _Fire return _run_code(code, main_globals, None, File "/root/miniconda3/envs/py3.10/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/workspace/axolotl/src/axolotl/cli/train.py", line 59, in fire.Fire(do_cli) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 143, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 477, in _Fire component, remaining_args = _CallAndUpdateTrace( File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 693, in _CallAndUpdateTrace component, remaining_args = _CallAndUpdateTrace( File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/fire/core.py", line 693, in _CallAndUpdateTrace component = fn(*varargs, *kwargs) File "/workspace/axolotl/src/axolotl/cli/train.py", line 35, in do_cli return do_train(parsed_cfg, parsed_cli_args) File "/workspace/axolotl/src/axolotl/cli/train.py", line 55, in do_train return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) File "/workspace/axolotl/src/axolotl/train.py", line 87, in train model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference) File "/workspace/axolotl/src/axolotl/utils/models.py", line 799, in load_model model.to(f"cuda:{cfg.local_rank}") File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1160, in to component = fn(varargs, **kwargs) File "/workspace/axolotl/src/axolotl/cli/train.py", line 35, in do_cli return do_train(parsed_cfg, parsed_cli_args) File "/workspace/axolotl/src/axolotl/cli/train.py", line 55, in do_train return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) File "/workspace/axolotl/src/axolotl/train.py", line 87, in train model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference) File "/workspace/axolotl/src/axolotl/utils/models.py", line 799, in load_model model.to(f"cuda:{cfg.local_rank}") File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1160, in to return self._apply(convert) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) [Previous line repeated 5 more times] File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 833, in _apply param_applied = fn(param) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1158, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/bitsandbytes/nn/modules.py", line 318, in to return self._apply(convert) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 810, in _apply module._apply(fn) [Previous line repeated 5 more times] File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 833, in _apply param_applied = fn(param) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1158, in convert return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking) File "/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/bitsandbytes/nn/modules.py", line 318, in to new_param = Params4bit(super().to(device=device, dtype=dtype, non_blocking=non_blocking), torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 32.00 MiB. GPU 1 has a total capacty of 23.69 GiB of which 6.94 MiB is free. Process 156255 has 23.68 GiB memory in use. Of the allocated memory 22.54 GiB is allocated by PyTorch, and 20.72 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF new_param = Params4bit(super().to(device=device, dtype=dtype, non_blocking=non_blocking), torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU 0 has a total capacty of 23.68 GiB of which 49.00 MiB is free. Process 156254 has 23.63 GiB memory in use. Of the allocated memory 22.43 GiB is allocated by PyTorch, and 67.38 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

Steps to reproduce

accelerate launch -m axolotl.cli.train examples/llama-2/qlora-fsdp.yml

with examples/llama-2/qlora-fsdp.yml change to base_model: NousResearch/Llama-2-70b-chat-hf and batch size 1.

Config yaml

ref: examples/llama-2/qlora-fsdp.yml

Possible solution

No response

Which Operating Systems are you using?

Python Version

3.10

axolotl branch-commit

main/4d6490b

Acknowledgements

winglian commented 7 months ago

try changing these settings

micro_batch_size: 1
optimizer: paged_adamw_8bit
yaohwang commented 7 months ago

try changing these settings

micro_batch_size: 1
optimizer: paged_adamw_8bit

thanks for your help, but still get the same error

`base_model: NousResearch/Llama-2-70b-chat-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer

load_in_8bit: false load_in_4bit: true strict: false

datasets:

adapter: qlora lora_model_dir:

sequence_len: 512 sample_packing: false pad_to_sequence_len: true

lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out:

wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model:

gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00001

train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true

gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true

warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp:

winglian commented 7 months ago

how much CPU memory do you have? Keep I mind that offloading 70B llama-2 requires 128GB of system/CPU RAM.

yaohwang commented 7 months ago

how much CPU memory do you have? Keep I mind that offloading 70B llama-2 requires 128GB of system/CPU RAM.

yeah, that's it, 128GB RAM and 2x 24G RTX3090, and I've been tested 70b llama2 on https://github.com/AnswerDotAI/fsdp_qlora before I use axolotl, with the same environment, it worked.

so I'm expecting axolotl having FSDP+QLORA get the same thing work.

and thanks man, you are doing great job!

orgmast5 commented 1 month ago

@yaohwang @winglian any updates?