Closed qingchen177 closed 3 weeks ago
在跑图片描述demo的时候,在
# generate outputs = model.generate( inputs.input_ids.to("cuda:0"), GENERATION_CONFIG, attention_mask=pos_inputs.attention_mask.to("cuda:0"), )
pos_inputs未定义
顺便希望能补充部署模型的资源使用情况最少需要多少GB显存等。
完整代码如下: Use 🤗Transformers to run Emu3-Chat/Stage1 for vision-language understanding
from PIL import Image from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM from transformers.generation.configuration_utils import GenerationConfig import torch from emu3.mllm.processing_emu3 import Emu3Processor # model path EMU_HUB = "BAAI/Emu3-Chat" VQ_HUB = "BAAI/Emu3-VisionTokenier" # prepare model and processor model = AutoModelForCausalLM.from_pretrained( EMU_HUB, device_map="cuda:0", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True, ) # used for Emu3-Chat tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left") # used for Emu3-Stage1 # tokenizer = AutoTokenizer.from_pretrained( # EMU_HUB, # trust_remote_code=True, # chat_template="{image_prompt}{text_prompt}", # padding_side="left", # ) image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True) image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval() processor = Emu3Processor(image_processor, image_tokenizer, tokenizer) # prepare input text = "Please describe the image" image = Image.open("assets/demo.png") inputs = processor( text=text, image=image, mode='U', return_tensors="pt", padding="longest", ) # prepare hyper parameters GENERATION_CONFIG = GenerationConfig( pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, ) # generate outputs = model.generate( inputs.input_ids.to("cuda:0"), GENERATION_CONFIG, attention_mask=pos_inputs.attention_mask.to("cuda:0"), ) outputs = outputs[:, inputs.input_ids.shape[-1]:] print(processor.batch_decode(outputs, skip_special_tokens=True)[0])
pos_inputs是一个typo,应该是inputs,感谢提出,README.md中的代码部分已改正。40GB的显存能够满足chat和gen的生成需求。
在跑图片描述demo的时候,在
pos_inputs未定义
顺便希望能补充部署模型的资源使用情况最少需要多少GB显存等。
完整代码如下: Use 🤗Transformers to run Emu3-Chat/Stage1 for vision-language understanding