Surrogate CMA-ES (S-CMA-ES and DTS-CMA-ES) is a surrogate-based optimizing evolution strategy. It is based on the N. Hansen's CMA-ES algorithm which is interconnected with Gaussian processes (or random forests, that are, however, not maintained here anymore).
new option dimReduction in modelOpts. (Valid only for GP)
dimReduction=1 -> reduce at 100% no reduction
dimReduction=0.9 -> reduce at 90% etc...
All points before training and predictting are trasformed to the basis
of BD and then is used only first dimReduction dimensions of points for train and
predict.
Ahoj Lukáši,
je to můj první pull-reques a nejsem si uplně jistý, že jsem vše udělal git-ok, dáš mi prosím vědět, ať už se request povede nebo ne :)?
Dík Vojta
new option dimReduction in modelOpts. (Valid only for GP) dimReduction=1 -> reduce at 100% no reduction dimReduction=0.9 -> reduce at 90% etc... All points before training and predictting are trasformed to the basis of BD and then is used only first dimReduction dimensions of points for train and predict.