baowenbo / DAIN

Depth-Aware Video Frame Interpolation (CVPR 2019)
https://sites.google.com/view/wenbobao/dain
MIT License
8.23k stars 841 forks source link

UnboundLocalError: local variable 'cur_offset_output' referenced before assignment #62

Open molo32 opened 4 years ago

molo32 commented 4 years ago

I am using colab in the part of generating frames it gives me this error

/content/DAIN
revise the unique id to a random numer 95550
Namespace(SAVED_MODEL=None, alpha=[0.0, 1.0], arg='./model_weights/95550-Fri-Apr-03-21:35/args.txt', batch_size=1, channels=3, ctx_lr_coe=1.0, datasetName='Vimeo_90K_interp', datasetPath='', dataset_split=97, debug=False, depth_lr_coe=0.001, dtype=<class 'torch.cuda.FloatTensor'>, end_frame=33, epsilon=1e-06, factor=0.2, filter_lr_coe=1.0, filter_size=4, flow_lr_coe=0.01, force=False, frame_input_dir='/content/DAIN/input_frames', frame_output_dir='/content/DAIN/output_frames', log='./model_weights/95550-Fri-Apr-03-21:35/log.txt', lr=0.002, netName='DAIN_slowmotion', no_date=False, numEpoch=100, occ_lr_coe=1.0, patience=5, rectify_lr=0.001, save_path='./model_weights/95550-Fri-Apr-03-21:35', save_which=1, seed=1, start_frame=1, time_step=1.0, uid=None, use_cuda=True, use_cudnn=1, weight_decay=0, workers=8)
cudnn is used
Interpolate 0 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2506: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  "See the documentation of nn.Upsample for details.".format(mode))
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:2705: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.
  warnings.warn("Default grid_sample and affine_grid behavior has changed "
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
/pytorch/torch/csrc/autograd/python_function.cpp:622: UserWarning: Legacy autograd function with non-static forward method is deprecated and will be removed in 1.3. Please use new-style autograd function with static forward method. (Example: https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function)
Traceback (most recent call last):
  File "colab_interpolate.py", line 112, in <module>
    y_s, offset, filter = model(torch.stack((X0, X1),dim = 0))
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 532, in __call__
    result = self.forward(*input, **kwargs)
  File "/content/DAIN/networks/DAIN_slowmotion.py", line 202, in forward
    return cur_outputs,cur_offset_output,cur_filter_output
UnboundLocalError: local variable 'cur_offset_output' referenced before assignment
rastaman7 commented 4 years ago

I had a similar problem, but fixed it by entering the correct number for the time_step argument. Your time_step is set to 1.0, but it should be set to 0.5, 0.25... to do interpolation.

andrewnc commented 3 years ago

As an additional fix, this may also mean that you are choosing a target FPS that is too low and the ratio is insufficient