When running the trainOcc in parallel, the follow error was prompted. But this error was not prompted when not using parallel mode. Attached a reproducible R code for your reference. Thank!
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
There were missing values in resampled performance measures.**
tocc <- trainOcc(x=input_data [, -3], y=input_data [, 3], trControl=cntrl, method = "ocsvm")
Setting direction: controls > cases
Warning messages:
1: In .positiveLabel(y) : Positive label not given explicitly.
The positive class is assumed to be the one with smaller frequency.
2 (pos): 0 samples
2 (un): 2640 samples
2: In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
There were missing values in resampled performance measures.
tocc
one-class svm
2640 samples
2 predictor
2 classes: 'un', 'pos'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 2111, 2112, 2112, 2113, 2112
Resampling results across tuning parameters:
sigma nu tpr puP ppp puAuc puF puF1 pn
1e-03 0.01 NaN 0 NaN 0 0 0 NaN
1e-03 0.05 NaN 0 NaN 0 0 0 NaN
1e-03 0.10 NaN 0 NaN 0 0 0 NaN
1e-03 0.15 NaN 0 NaN 0 0 0 NaN
1e-03 0.20 NaN 0 NaN 0 0 0 NaN
1e-03 0.25 NaN 0 NaN 0 0 0 NaN
1e-02 0.01 NaN 0 NaN 0 0 0 NaN
1e-02 0.05 NaN 0 NaN 0 0 0 NaN
1e-02 0.10 NaN 0 NaN 0 0 0 NaN
1e-02 0.15 NaN 0 NaN 0 0 0 NaN
1e-02 0.20 NaN 0 NaN 0 0 0 NaN
1e-02 0.25 NaN 0 NaN 0 0 0 NaN
1e-01 0.01 NaN 0 NaN 0 0 0 NaN
1e-01 0.05 NaN 0 NaN 0 0 0 NaN
1e-01 0.10 NaN 0 NaN 0 0 0 NaN
1e-01 0.15 NaN 0 NaN 0 0 0 NaN
1e-01 0.20 NaN 0 NaN 0 0 0 NaN
1e-01 0.25 NaN 0 NaN 0 0 0 NaN
1e+00 0.01 NaN 0 NaN 0 0 0 NaN
1e+00 0.05 NaN 0 NaN 0 0 0 NaN
1e+00 0.10 NaN 0 NaN 0 0 0 NaN
1e+00 0.15 NaN 0 NaN 0 0 0 NaN
1e+00 0.20 NaN 0 NaN 0 0 0 NaN
1e+00 0.25 NaN 0 NaN 0 0 0 NaN
1e+01 0.01 NaN 0 NaN 0 0 0 NaN
1e+01 0.05 NaN 0 NaN 0 0 0 NaN
1e+01 0.10 NaN 0 NaN 0 0 0 NaN
1e+01 0.15 NaN 0 NaN 0 0 0 NaN
1e+01 0.20 NaN 0 NaN 0 0 0 NaN
1e+01 0.25 NaN 0 NaN 0 0 0 NaN
1e+02 0.01 NaN 0 NaN 0 0 0 NaN
1e+02 0.05 NaN 0 NaN 0 0 0 NaN
1e+02 0.10 NaN 0 NaN 0 0 0 NaN
1e+02 0.15 NaN 0 NaN 0 0 0 NaN
1e+02 0.20 NaN 0 NaN 0 0 0 NaN
1e+02 0.25 NaN 0 NaN 0 0 0 NaN
puF was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.001 and nu = 0.01.
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Chinese (Traditional)_Hong Kong SAR.950 LC_CTYPE=Chinese (Traditional)_Hong Kong SAR.950
[3] LC_MONETARY=Chinese (Traditional)_Hong Kong SAR.950 LC_NUMERIC=C
[5] LC_TIME=Chinese (Traditional)_Hong Kong SAR.950
attached base packages:
[1] stats graphics grDevices utils datasets methods base
Hello,
When running the trainOcc in parallel, the follow error was prompted. But this error was not prompted when not using parallel mode. Attached a reproducible R code for your reference. Thank!
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : There were missing values in resampled performance measures.**
2640 samples 2 predictor 2 classes: 'un', 'pos'
No pre-processing Resampling: Cross-Validated (5 fold) Summary of sample sizes: 2111, 2112, 2112, 2113, 2112 Resampling results across tuning parameters:
sigma nu tpr puP ppp puAuc puF puF1 pn 1e-03 0.01 NaN 0 NaN 0 0 0 NaN 1e-03 0.05 NaN 0 NaN 0 0 0 NaN 1e-03 0.10 NaN 0 NaN 0 0 0 NaN 1e-03 0.15 NaN 0 NaN 0 0 0 NaN 1e-03 0.20 NaN 0 NaN 0 0 0 NaN 1e-03 0.25 NaN 0 NaN 0 0 0 NaN 1e-02 0.01 NaN 0 NaN 0 0 0 NaN 1e-02 0.05 NaN 0 NaN 0 0 0 NaN 1e-02 0.10 NaN 0 NaN 0 0 0 NaN 1e-02 0.15 NaN 0 NaN 0 0 0 NaN 1e-02 0.20 NaN 0 NaN 0 0 0 NaN 1e-02 0.25 NaN 0 NaN 0 0 0 NaN 1e-01 0.01 NaN 0 NaN 0 0 0 NaN 1e-01 0.05 NaN 0 NaN 0 0 0 NaN 1e-01 0.10 NaN 0 NaN 0 0 0 NaN 1e-01 0.15 NaN 0 NaN 0 0 0 NaN 1e-01 0.20 NaN 0 NaN 0 0 0 NaN 1e-01 0.25 NaN 0 NaN 0 0 0 NaN 1e+00 0.01 NaN 0 NaN 0 0 0 NaN 1e+00 0.05 NaN 0 NaN 0 0 0 NaN 1e+00 0.10 NaN 0 NaN 0 0 0 NaN 1e+00 0.15 NaN 0 NaN 0 0 0 NaN 1e+00 0.20 NaN 0 NaN 0 0 0 NaN 1e+00 0.25 NaN 0 NaN 0 0 0 NaN 1e+01 0.01 NaN 0 NaN 0 0 0 NaN 1e+01 0.05 NaN 0 NaN 0 0 0 NaN 1e+01 0.10 NaN 0 NaN 0 0 0 NaN 1e+01 0.15 NaN 0 NaN 0 0 0 NaN 1e+01 0.20 NaN 0 NaN 0 0 0 NaN 1e+01 0.25 NaN 0 NaN 0 0 0 NaN 1e+02 0.01 NaN 0 NaN 0 0 0 NaN 1e+02 0.05 NaN 0 NaN 0 0 0 NaN 1e+02 0.10 NaN 0 NaN 0 0 0 NaN 1e+02 0.15 NaN 0 NaN 0 0 0 NaN 1e+02 0.20 NaN 0 NaN 0 0 0 NaN 1e+02 0.25 NaN 0 NaN 0 0 0 NaN
puF was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.001 and nu = 0.01.
Matrix products: default
locale: [1] LC_COLLATE=Chinese (Traditional)_Hong Kong SAR.950 LC_CTYPE=Chinese (Traditional)_Hong Kong SAR.950
[3] LC_MONETARY=Chinese (Traditional)_Hong Kong SAR.950 LC_NUMERIC=C
[5] LC_TIME=Chinese (Traditional)_Hong Kong SAR.950
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages: [1] oneClass_0.5.0 kernlab_0.9-29 pROC_1.16.2 caret_6.0-86 lattice_0.20-41 forcats_0.5.0
[7] stringr_1.4.0 dplyr_0.8.5 purrr_0.3.4 readr_1.3.1 tidyr_1.0.2 tibble_3.0.1
[13] ggplot2_3.3.0 tidyverse_1.3.0 imbalance_1.0.2.1
loaded via a namespace (and not attached): [1] Rcpp_1.0.4.6 raster_3.1-5 xml2_1.3.1 magrittr_1.5 MASS_7.3-51.5
[6] splines_3.6.3 hms_0.5.3 rvest_0.3.5 tidyselect_1.0.0 colorspace_1.4-1
[11] R6_2.4.1 rlang_0.4.5 foreach_1.5.0 fansi_0.4.1 rgdal_1.4-8
[16] parallel_3.6.3 broom_0.5.6 dismo_1.1-4 gower_0.2.1 dbplyr_1.4.3
[21] modelr_0.1.6 withr_2.2.0 spatial.tools_1.6.2 ellipsis_0.3.0 iterators_1.0.12
[26] class_7.3-15 recipes_0.1.10 abind_1.4-5 assertthat_0.2.1 lifecycle_0.2.0
[31] Matrix_1.2-18 haven_2.2.0 mmap_0.6-19 sp_1.4-1 compiler_3.6.3
[36] cellranger_1.1.0 pillar_1.4.3 scales_1.1.0 backports_1.1.6 generics_0.0.2
[41] stats4_3.6.3 lubridate_1.7.8 jsonlite_1.6.1 pkgconfig_2.0.3 smotefamily_1.3.1
[46] rstudioapi_0.11 doParallel_1.0.15 munsell_0.5.0 prodlim_2019.11.13 httr_1.4.1
[51] plyr_1.8.6 tools_3.6.3 grid_3.6.3 nnet_7.3-12 ipred_0.9-9
[56] nlme_3.1-144 timeDate_3043.102 data.table_1.12.8 gtable_0.3.0 DBI_1.1.0
[61] cli_2.0.2 readxl_1.3.1 yaml_2.2.1 survival_3.1-12 crayon_1.3.4
[66] lava_1.6.7 reshape2_1.4.4 ModelMetrics_1.2.2.2 codetools_0.2-16 fs_1.4.1
[71] vctrs_0.2.4 rpart_4.1-15 glue_1.4.0 reprex_0.3.0 stringi_1.4.6
ONECLASS_ERROR.zip