bioFAM / MOFA

Multi-Omics Factor Analysis
GNU Lesser General Public License v3.0
235 stars 60 forks source link

How can I extract the gene sets with larger weights in the factors? #41

Closed nnlrl closed 5 years ago

rargelaguet commented 5 years ago

You have two options to explore the GSEA results: (1) Fetch the p-values and the corresponding gene set statistics and do your own plots. See the output of runEnrichmentAnalysis (2) We provide two visualisation functions:plotEnrichment plotEnrichmentDetailed. Please, read the documentation of these functions and let me know if something is not clear.

An example of the GSEA usage is provided here: https://bioconductor.org/packages/release/bioc/vignettes/MOFA/inst/doc/MOFA_example_CLL.html

Best, Ricard.

nnlrl commented 5 years ago

Thank you for your reply. But I still don't understand how to extract feature information that can distinguish sample differences,similar to the first principal component.

best, wang

------------------ 原始邮件 ------------------ 发件人: "Ricard Argelaguet"notifications@github.com; 发送时间: 2019年8月8日(星期四) 晚上9:54 收件人: "bioFAM/MOFA"MOFA@noreply.github.com; 抄送: "老四"1052369741@qq.com;"Author"author@noreply.github.com; 主题: Re:[bioFAM / MOFA]如何在因子中提取具有较大权重的基因集?(#41)

您可以通过三种方式探索GSEA结果: (1)获取p值和相应的基因集统计数据并制作您自己的图表。参见runEnrichmentAnalysis (2)的输出我们提供两个可视化功能:plotEnrichment plotEnrichmentDetailed。请阅读这些功能的文档,如果不清楚,请告诉我。

此处提供了GSEA用法的示例:https://bioconductor.org/packages/release/bioc/vignettes/MOFA/inst/doc/MOFA_example_CLL.html

最好的, Ricard。