Open twmht opened 4 years ago
800*800 would get better result in small face, but it may influences the result of big face.
@biubug6
As compared to the original mxnet implementation, is the difference that you add ssh head?
这个SSH
里面定义的conv5X5
和self.conv7X7
还是在使用卷积核为3....
def conv_bn(inp, oup, stride = 1, leaky = 0):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.LeakyReLU(negative_slope=leaky, inplace=True)
)
.
.
.
self.conv5X5_1 = conv_bn(in_channel, out_channel//4, stride=1, leaky = leaky)
self.conv5X5_2 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
self.conv7X7_2 = conv_bn(out_channel//4, out_channel//4, stride=1, leaky = leaky)
self.conv7x7_3 = conv_bn_no_relu(out_channel//4, out_channel//4, stride=1)
@zhen8838 @biubug6 这块用7x7;5x5;3x3好像没啥影响吧?
感觉只是个命名问题
我不知道作者本来想用什么卷积核.
这个就需要问作者了。。。 @biubug6
It just means to have a 5 5 or 77 receptive field. Large kernels are not recommended at the back of the network because of expensive computing.
@OK! I get it, Thank you for your reply!
@biubug6
Have you ever trained on more larger resolution like 800x800 with mobile0.25? I got much more worse result than default 640x640.
Any idea?