bmaltais / kohya_ss

Apache License 2.0
9.66k stars 1.24k forks source link

My model files come in json instead of a safetensor #2386

Closed bulb1czek closed 6 months ago

bulb1czek commented 6 months ago

Exception in thread Thread-3 (_do_normal_analytics_request): Traceback (most recent call last): File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 69, in map_httpcore_exceptions yield File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 233, in handle_request resp = self._pool.handle_request(req) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection_pool.py", line 216, in handle_request raise exc from None File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection_pool.py", line 196, in handle_request response = connection.handle_request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection.py", line 99, in handle_request raise exc File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection.py", line 76, in handle_request stream = self._connect(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection.py", line 154, in _connect stream = stream.start_tls(**kwargs) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_backends\sync.py", line 152, in start_tls with map_exceptions(exc_map): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\contextlib.py", line 153, in exit self.gen.throw(typ, value, traceback) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_exceptions.py", line 14, in map_exceptions raise to_exc(exc) from exc httpcore.ConnectTimeout: _ssl.c:980: The handshake operation timed out

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\threading.py", line 953, in run self._target(*self._args, self._kwargs) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\gradio\analytics.py", line 61, in _do_normal_analytics_request data["ip_address"] = get_local_ip_address() File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\gradio\analytics.py", line 117, in get_local_ip_address ip_address = httpx.get( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_api.py", line 198, in get return request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_api.py", line 106, in request return client.request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 827, in request return self.send(request, auth=auth, follow_redirects=follow_redirects) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 914, in send response = self._send_handling_auth( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 942, in _send_handling_auth response = self._send_handling_redirects( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 979, in _send_handling_redirects response = self._send_single_request(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 1015, in _send_single_request response = transport.handle_request(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 232, in handle_request with map_httpcore_exceptions(): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\contextlib.py", line 153, in exit self.gen.throw(typ, value, traceback) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 86, in map_httpcore_exceptions raise mapped_exc(message) from exc httpx.ConnectTimeout: _ssl.c:980: The handshake operation timed out Exception in thread Thread-5 (_do_normal_analytics_request): Traceback (most recent call last): File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 69, in map_httpcore_exceptions yield File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 233, in handle_request resp = self._pool.handle_request(req) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection_pool.py", line 216, in handle_request raise exc from None File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection_pool.py", line 196, in handle_request response = connection.handle_request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\connection.py", line 101, in handle_request return self._connection.handle_request(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\http11.py", line 143, in handle_request raise exc File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\http11.py", line 95, in handle_request self._send_request_body(kwargs) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\http11.py", line 166, in _send_request_body self._send_event(event, timeout=timeout) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_sync\http11.py", line 175, in _send_event self._network_stream.write(bytes_to_send, timeout=timeout) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_backends\sync.py", line 133, in write with map_exceptions(exc_map): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\contextlib.py", line 153, in exit self.gen.throw(typ, value, traceback) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpcore_exceptions.py", line 14, in map_exceptions raise to_exc(exc) from exc httpcore.WriteTimeout: The write operation timed out

The above exception was the direct cause of the following exception:

Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\threading.py", line 953, in run self._target(*self._args, *self._kwargs) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\gradio\analytics.py", line 63, in _do_normal_analytics_request httpx.post(url, data=data, timeout=5) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_api.py", line 319, in post return request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_api.py", line 106, in request return client.request( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 827, in request return self.send(request, auth=auth, follow_redirects=follow_redirects) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 914, in send response = self._send_handling_auth( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 942, in _send_handling_auth response = self._send_handling_redirects( File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 979, in _send_handling_redirects response = self._send_single_request(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_client.py", line 1015, in _send_single_request response = transport.handle_request(request) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 232, in handle_request with map_httpcore_exceptions(): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\contextlib.py", line 153, in exit self.gen.throw(typ, value, traceback) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\httpx_transports\default.py", line 86, in map_httpcore_exceptions raise mapped_exc(message) from exc httpx.WriteTimeout: The write operation timed out 18:36:07-469790 INFO Loading config... 18:36:52-983707 INFO Save... 18:36:54-268997 INFO Start training Dreambooth... 18:36:54-269994 INFO Validating lr scheduler arguments... 18:36:54-271988 INFO Validating optimizer arguments... 18:36:54-273983 INFO Validating model file or folder path runwayml/stable-diffusion-v1-5 existence... 18:36:54-274980 INFO ...huggingface.co model, skipping validation 18:36:54-276976 INFO Validating output_dir path C:/Users/admin/Documents/ai/Training/Otter/model existence... 18:36:54-277973 INFO ...valid 18:36:54-278970 INFO Validating train_data_dir path C:/Users/admin/Documents/ai/Training/Otter/img existence... 18:36:54-280988 INFO ...valid 18:36:54-281962 INFO reg_data_dir not specified, skipping validation 18:36:54-283956 INFO Validating logging_dir path C:/Users/admin/Documents/ai/Training/Otter/model existence... 18:36:54-284978 INFO ...valid 18:36:54-285951 INFO log_tracker_config not specified, skipping validation 18:36:54-286949 INFO resume not specified, skipping validation 18:36:54-287945 INFO vae not specified, skipping validation 18:36:54-289940 INFO dataset_config not specified, skipping validation 18:36:54-290937 INFO Folder 115_OTTAH otter: 115 repeats found 18:36:54-292932 INFO Folder 115_OTTAH otter: 12 images found 18:36:54-293949 INFO Folder 115_OTTAH otter: 12 115 = 1380 steps 18:36:54-296964 INFO Regulatization factor: 1 18:36:54-299927 INFO Total steps: 1380 18:36:54-300926 INFO Train batch size: 1 18:36:54-302920 INFO Gradient accumulation steps: 1 18:36:54-303917 INFO Epoch: 1 18:36:54-304914 INFO Max train steps: 1600 18:36:54-306910 INFO lr_warmup_steps = 0 18:36:54-309902 INFO Saving training config to C:/Users/admin/Documents/ai/Training/Otter/model\Otter_20240425-183654.json... 18:36:54-311896 INFO Executing command: "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\Scripts\accelerate.EXE" launch --dynamo_backend no --dynamo_mode default --mixed_precision fp16 --num_processes 1 --num_machines 1 --num_cpu_threads_per_process 2 "C:/Users/admin/Documents/ai/khoya/kohya_ss/sd-scripts/train_db.py" --config_file "./outputs/tmpfiledbooth.toml" with shell=True 18:36:54-316424 INFO Command executed. Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\Scripts\accelerate.exe__main.py", line 4, in File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 21, in from accelerate.commands.estimate import estimate_command_parser File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\estimate.py", line 35, in import timm File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm__init.py", line 2, in from .models import create_model, list_models, is_model, list_modules, model_entrypoint, \ File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\models__init.py", line 1, in from .beit import * File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\models\beit.py", line 49, in from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\data\init__.py", line 5, in from .dataset import ImageDataset, IterableImageDataset, AugMixDataset File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\data\dataset.py", line 12, in from .parsers import create_parser File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\data\parsers\init__.py", line 1, in from .parser_factory import create_parser File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\data\parsers\parser_factory.py", line 3, in from .parser_image_folder import ParserImageFolder File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\data\parsers\parser_image_folder.py", line 11, in from timm.utils.misc import natural_key File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\utils\init.py", line 2, in from .checkpoint_saver import CheckpointSaver File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\utils\checkpoint_saver.py", line 15, in from .model import unwrap_model, get_state_dict File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\timm\utils\model.py", line 8, in from torchvision.ops.misc import FrozenBatchNorm2d File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torchvision\init__.py", line 6, in from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torchvision_meta_registrations.py", line 164, in def meta_nms(dets, scores, iou_threshold): File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torch_custom_ops.py", line 253, in inner custom_op = _find_custom_op(qualname, also_check_torch_library=True) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torch_custom_op\impl.py", line 1076, in _find_custom_op overload = get_op(qualname) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torch_custom_op\impl.py", line 1062, in get_op error_not_found() File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\torch_custom_op\impl.py", line 1052, in error_not_found raise ValueError( ValueError: Could not find the operator torchvision::nms. Please make sure you have already registered the operator and (if registered from C++) loaded it via torch.ops.load_library. 18:36:58-601297 INFO Training has ended.

I tried adafactor and AdamW ![Uploading image.png…]()

any help appreciated!

bmaltais commented 6 months ago

Look like there is an issue with the installation of torchvision... Did you install all the windows pre-requirements as instructed? Making sure to install CUDA as specified?

bulb1czek commented 6 months ago

Look like there is an issue with the installation of torchvision... Did you install all the windows pre-requirements as instructed? Making sure to install CUDA as specified?

installed Cuda and installed it for visual studio 2022 Installed python And Git.

"20:52:18-460137 INFO Start training LoRA Standard ... 20:52:18-462142 INFO Validating lr scheduler arguments... 20:52:18-463126 INFO Validating optimizer arguments... 20:52:18-465120 INFO Validating model file or folder path runwayml/stable-diffusion-v1-5 existence... 20:52:18-466117 INFO ...huggingface.co model, skipping validation 20:52:18-467213 INFO Validating output_dir path C:/Users/admin/Documents/ai/Training/Otter/model existence... 20:52:18-469205 INFO ...valid 20:52:18-470174 INFO Validating train_data_dir path C:/Users/admin/Documents/ai/Training/Otter/img existence... 20:52:18-472674 INFO ...valid 20:52:18-474894 INFO reg_data_dir not specified, skipping validation 20:52:18-475886 INFO Validating logging_dir path C:/Users/admin/Documents/ai/Training/Otter/model existence... 20:52:18-476884 INFO ...valid 20:52:18-478951 INFO log_tracker_config not specified, skipping validation 20:52:18-479948 INFO resume not specified, skipping validation 20:52:18-481079 INFO vae not specified, skipping validation 20:52:18-482073 INFO network_weights not specified, skipping validation 20:52:18-483071 INFO dataset_config not specified, skipping validation 20:52:18-486063 INFO Folder 115_OTTAH otter: 115 repeats found 20:52:18-487592 INFO Folder 115_OTTAH otter: 12 images found 20:52:18-488585 INFO Folder 115_OTTAH otter: 12 * 115 = 1380 steps 20:52:18-491414 INFO Regulatization factor: 1 20:52:18-495420 INFO Total steps: 1380 20:52:18-522061 INFO Train batch size: 1 20:52:18-523055 INFO Gradient accumulation steps: 1 20:52:18-530612 INFO Epoch: 1 20:52:18-531606 INFO Max train steps: 1600 20:52:18-532604 INFO stop_text_encoder_training = 0 20:52:18-533709 INFO lr_warmup_steps = 0 20:52:18-535718 INFO Saving training config to C:/Users/admin/Documents/ai/Training/Otter/model\Otter_20240425-205218.json... 20:52:18-541610 INFO Executing command: "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\Scripts\accelerate.EXE" launch --dynamo_backend no --dynamo_mode default --mixed_precision fp16 --num_processes 1 --num_machines 1 --num_cpu_threads_per_process 2 "C:/Users/admin/Documents/ai/khoya/kohya_ss/sd-scripts/train_network.py" --config_file "./outputs/tmpfilelora.toml" with shell=True 20:52:18-545182 INFO Command executed. 2024-04-25 20:52:30 INFO Loading settings from ./outputs/tmpfilelora.toml... train_util.py:3744 INFO ./outputs/tmpfilelora train_util.py:3763 2024-04-25 20:52:30 INFO prepare tokenizer train_util.py:4227 2024-04-25 20:52:31 INFO update token length: 75 train_util.py:4244 INFO Using DreamBooth method. train_network.py:172 INFO prepare images. train_util.py:1572 INFO found directory C:\Users\admin\Documents\ai\Training\Otter\img\115_OTTAH train_util.py:1519 otter contains 12 image files INFO 1380 train images with repeating. train_util.py:1613 INFO 0 reg images. train_util.py:1616 WARNING no regularization images / 正則化画像が見つかりませんでした train_util.py:1621 INFO [Dataset 0] config_util.py:565 batch_size: 1 resolution: (512, 512) enable_bucket: True network_multiplier: 1.0 min_bucket_reso: 256 max_bucket_reso: 2048 bucket_reso_steps: 64 bucket_no_upscale: True

                           [Subset 0 of Dataset 0]
                             image_dir: "C:\Users\admin\Documents\ai\Training\Otter\img\115_OTTAH
                         otter"
                             image_count: 12
                             num_repeats: 115
                             shuffle_caption: False
                             keep_tokens: 0
                             keep_tokens_separator:
                             secondary_separator: None
                             enable_wildcard: False
                             caption_dropout_rate: 0.0
                             caption_dropout_every_n_epoches: 0
                             caption_tag_dropout_rate: 0.0
                             caption_prefix: None
                             caption_suffix: None
                             color_aug: False
                             flip_aug: False
                             face_crop_aug_range: None
                             random_crop: False
                             token_warmup_min: 1,
                             token_warmup_step: 0,
                             is_reg: False
                             class_tokens: OTTAH otter
                             caption_extension: .txt

                INFO     [Dataset 0]                                                              config_util.py:571
                INFO     loading image sizes.                                                      train_util.py:853

100%|████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 1394.73it/s] INFO make buckets train_util.py:859 WARNING min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is train_util.py:876 set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計 算されるため、min_bucket_resoとmax_bucket_resoは無視されます INFO number of images (including repeats) / train_util.py:905 各bucketの画像枚数(繰り返し回数を含む) INFO bucket 0: resolution (192, 256), count: 115 train_util.py:910 INFO bucket 1: resolution (192, 384), count: 115 train_util.py:910 INFO bucket 2: resolution (384, 512), count: 345 train_util.py:910 INFO bucket 3: resolution (448, 512), count: 115 train_util.py:910 INFO bucket 4: resolution (512, 384), count: 115 train_util.py:910 INFO bucket 5: resolution (512, 512), count: 345 train_util.py:910 INFO bucket 6: resolution (640, 384), count: 230 train_util.py:910 INFO mean ar error (without repeats): 0.028953594419661194 train_util.py:915 INFO preparing accelerator train_network.py:225 accelerator device: cpu INFO loading model for process 0/1 train_util.py:4385 INFO load Diffusers pretrained models: runwayml/stable-diffusion-v1-5 train_util.py:4347 Loading pipeline components...: 100%|████████████████████████████████████████████████████| 5/5 [00:00<00:00, 9.13it/s] You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing safety_checker=None. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . 2024-04-25 20:52:32 INFO UNet2DConditionModel: 64, 8, 768, False, False original_unet.py:1387 2024-04-25 20:53:02 INFO U-Net converted to original U-Net train_util.py:4372 INFO Enable memory efficient attention for U-Net train_util.py:2657 Traceback (most recent call last): File "C:\Users\admin\Documents\ai\khoya\kohya_ss\sd-scripts\train_network.py", line 1115, in trainer.train(args) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\sd-scripts\train_network.py", line 242, in train vae.set_use_memory_efficient_attention_xformers(args.xformers) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 262, in set_use_memory_efficient_attention_xformers fn_recursive_set_mem_eff(module) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 258, in fn_recursive_set_mem_eff fn_recursive_set_mem_eff(child) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 258, in fn_recursive_set_mem_eff fn_recursive_set_mem_eff(child) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 258, in fn_recursive_set_mem_eff fn_recursive_set_mem_eff(child) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\modeling_utils.py", line 255, in fn_recursive_set_mem_eff module.set_use_memory_efficient_attention_xformers(valid, attention_op) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\diffusers\models\attention_processor.py", line 260, in set_use_memory_efficient_attention_xformers raise ValueError( ValueError: torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only available for GPU Traceback (most recent call last): File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\admin\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\Scripts\accelerate.exe__main__.py", line 7, in File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 47, in main args.func(args) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1017, in launch_command simple_launcher(args) File "C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 637, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['C:\Users\admin\Documents\ai\khoya\kohya_ss\venv\Scripts\python.exe', 'C:/Users/admin/Documents/ai/khoya/kohya_ss/sd-scripts/train_network.py', '--config_file', './outputs/tmpfilelora.toml']' returned non-zero exit status 1. 20:53:05-323250 INFO Training has ended."

bmaltais commented 6 months ago

Can you try training with the base as model instead? Not sure what model you use… but if it not the base, try with it…

bulb1czek commented 6 months ago

Can you try training with the base as model I stead? Not sure what model you use… but if it not the base, try with it…

im using "runwayml/stable-diffusion-v1-5" !

bmaltais commented 6 months ago

Can you share the config file so I can try it on my system? If I can't reproduce the issue then it must be something specific to your system.

bulb1czek commented 6 months ago

Can you share the config file so I can try it on my system? If I can't reproduce the issue then it must be something specific to your system.

LoraLowVRAMSettings.json

bmaltais commented 6 months ago

Well... it train just fine on my system. Here is the log for the training:

19:44:45-473702 INFO     Kohya_ss GUI version: v24.0.8
19:44:45-959154 INFO     Submodule initialized and updated.
19:44:45-962152 INFO     nVidia toolkit detected
19:44:48-865444 INFO     Torch 2.1.2+cu118
19:44:48-887051 INFO     Torch backend: nVidia CUDA 11.8 cuDNN 8905
19:44:48-890059 INFO     Torch detected GPU: NVIDIA GeForce RTX 3090 VRAM 24576 Arch (8, 6) Cores 82
19:44:48-894054 INFO     Python version is 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
19:44:48-895054 INFO     Verifying modules installation status from requirements_pytorch_windows.txt...
19:44:48-902213 INFO     Verifying modules installation status from requirements_windows.txt...
19:44:48-907725 INFO     Verifying modules installation status from requirements.txt...
19:44:59-575359 INFO     headless: False
19:44:59-631209 INFO     Using shell=True when running external commands...
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
19:46:07-684896 INFO     Loading config...
19:47:43-236310 INFO     Start training LoRA Standard ...
19:47:43-238310 INFO     Validating lr scheduler arguments...
19:47:43-239313 INFO     Validating optimizer arguments...
19:47:43-240311 INFO     Validating model file or folder path runwayml/stable-diffusion-v1-5 existence...
19:47:43-241310 INFO     ...huggingface.co model, skipping validation
19:47:43-242310 INFO     Validating output_dir path D:/kohya_ss/outputs existence...
19:47:43-242310 INFO     ...valid
19:47:43-243309 INFO     Validating train_data_dir path D:/kohya_ss/test/img existence...
19:47:43-244310 INFO     ...valid
19:47:43-245309 INFO     reg_data_dir not specified, skipping validation
19:47:43-245309 INFO     Validating logging_dir path D:/kohya_ss/outputs/Otter/logs existence...
19:47:43-247311 INFO     ...created folder at D:/kohya_ss/outputs/Otter/logs
19:47:43-248542 INFO     log_tracker_config not specified, skipping validation
19:47:43-249541 INFO     resume not specified, skipping validation
19:47:43-250542 INFO     vae not specified, skipping validation
19:47:43-251542 INFO     network_weights not specified, skipping validation
19:47:43-252544 INFO     dataset_config not specified, skipping validation
19:47:43-253541 INFO     Folder 10_darius kawasaki person: 10 repeats found
19:47:43-255541 INFO     Folder 10_darius kawasaki person: 8 images found
19:47:43-256542 INFO     Folder 10_darius kawasaki person: 8 * 10 = 80 steps
19:47:43-257544 INFO     Regulatization factor: 1
19:47:43-258544 INFO     Total steps: 80
19:47:43-259543 INFO     Train batch size: 1
19:47:43-260541 INFO     Gradient accumulation steps: 1
19:47:43-261544 INFO     Epoch: 1
19:47:43-262544 INFO     Max train steps: 1600
19:47:43-263544 INFO     stop_text_encoder_training = 0
19:47:43-264551 INFO     lr_warmup_steps = 0
19:47:43-266550 INFO     Saving training config to D:/kohya_ss/outputs\Otter_20240426-194743.json...
19:47:43-268549 INFO     Executing command: "D:\kohya_ss\venv\Scripts\accelerate.EXE" launch --dynamo_backend no --dynamo_mode default --mixed_precision fp16 --num_processes 1 --num_machines 1
                         --num_cpu_threads_per_process 2 "D:/kohya_ss/sd-scripts/train_network.py" --config_file "./outputs/tmpfilelora.toml" with shell=True
19:47:43-275550 INFO     Command executed.
2024-04-26 19:47:50 WARNING  A matching Triton is not available, some optimizations will not be enabled.                                                                                                     __init__.py:55
                             Error caught was: No module named 'triton'                                                                                                                                                    
2024-04-26 19:47:52 INFO     Loading settings from ./outputs/tmpfilelora.toml...                                                                                                                         train_util.py:3744
                    INFO     ./outputs/tmpfilelora                                                                                                                                                       train_util.py:3763
2024-04-26 19:47:52 INFO     prepare tokenizer                                                                                                                                                           train_util.py:4227
2024-04-26 19:47:53 INFO     update token length: 75                                                                                                                                                     train_util.py:4244
                    INFO     Using DreamBooth method.                                                                                                                                                  train_network.py:172
                    INFO     prepare images.                                                                                                                                                             train_util.py:1572
                    INFO     found directory D:\kohya_ss\test\img\10_darius kawasaki person contains 8 image files                                                                                       train_util.py:1519
                    INFO     80 train images with repeating.                                                                                                                                             train_util.py:1613
                    INFO     0 reg images.                                                                                                                                                               train_util.py:1616
                    WARNING  no regularization images / 正則化画像が見つかりませんでした                                                                                                                 train_util.py:1621
                    INFO     [Dataset 0]                                                                                                                                                                 config_util.py:565
                               batch_size: 1                                                                                                                                                                               
                               resolution: (512, 512)                                                                                                                                                                      
                               enable_bucket: True                                                                                                                                                                         
                               network_multiplier: 1.0                                                                                                                                                                     
                               min_bucket_reso: 256                                                                                                                                                                        
                               max_bucket_reso: 2048                                                                                                                                                                       
                               bucket_reso_steps: 64                                                                                                                                                                       
                               bucket_no_upscale: True                                                                                                                                                                     

                               [Subset 0 of Dataset 0]                                                                                                                                                                     
                                 image_dir: "D:\kohya_ss\test\img\10_darius kawasaki person"                                                                                                                               
                                 image_count: 8                                                                                                                                                                            
                                 num_repeats: 10                                                                                                                                                                           
                                 shuffle_caption: False                                                                                                                                                                    
                                 keep_tokens: 0                                                                                                                                                                            
                                 keep_tokens_separator:                                                                                                                                                                    
                                 secondary_separator: None                                                                                                                                                                 
                                 enable_wildcard: False                                                                                                                                                                    
                                 caption_dropout_rate: 0.0                                                                                                                                                                 
                                 caption_dropout_every_n_epoches: 0                                                                                                                                                        
                                 caption_tag_dropout_rate: 0.0                                                                                                                                                             
                                 caption_prefix: None                                                                                                                                                                      
                                 caption_suffix: None                                                                                                                                                                      
                                 color_aug: False                                                                                                                                                                          
                                 flip_aug: False                                                                                                                                                                           
                                 face_crop_aug_range: None                                                                                                                                                                 
                                 random_crop: False                                                                                                                                                                        
                                 token_warmup_min: 1,                                                                                                                                                                      
                                 token_warmup_step: 0,                                                                                                                                                                     
                                 is_reg: False                                                                                                                                                                             
                                 class_tokens: darius kawasaki person                                                                                                                                                      
                                 caption_extension: .txt                                                                                                                                                                   

                    INFO     [Dataset 0]                                                                                                                                                                 config_util.py:571
                    INFO     loading image sizes.                                                                                                                                                         train_util.py:853
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 331.32it/s]
                    INFO     make buckets                                                                                                                                                                 train_util.py:859
                    WARNING  min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically /                                    train_util.py:876
                             bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます                                                         
                    INFO     number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)                                                                                              train_util.py:905
                    INFO     bucket 0: resolution (512, 512), count: 80                                                                                                                                   train_util.py:910
                    INFO     mean ar error (without repeats): 0.0                                                                                                                                         train_util.py:915
                    INFO     preparing accelerator                                                                                                                                                     train_network.py:225
accelerator device: cuda
                    INFO     loading model for process 0/1                                                                                                                                               train_util.py:4385
                    INFO     load Diffusers pretrained models: runwayml/stable-diffusion-v1-5                                                                                                            train_util.py:4347
Loading pipeline components...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 10.24it/s]
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .      
2024-04-26 19:47:54 INFO     UNet2DConditionModel: 64, 8, 768, False, False                                                                                                                           original_unet.py:1387
2024-04-26 19:48:01 INFO     U-Net converted to original U-Net                                                                                                                                           train_util.py:4372
2024-04-26 19:48:02 INFO     Enable memory efficient attention for U-Net                                                                                                                                 train_util.py:2657
import network module: networks.lora
                    INFO     [Dataset 0]                                                                                                                                                                 train_util.py:2079
                    INFO     caching latents.                                                                                                                                                             train_util.py:974
                    INFO     checking cache validity...                                                                                                                                                   train_util.py:984
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<?, ?it/s] 
                    INFO     caching latents...                                                                                                                                                          train_util.py:1021
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:02<00:00,  3.35it/s] 
2024-04-26 19:48:06 INFO     create LoRA network. base dim (rank): 8, alpha: 1                                                                                                                                  lora.py:810
                    INFO     neuron dropout: p=None, rank dropout: p=None, module dropout: p=None                                                                                                               lora.py:811
                    INFO     create LoRA for Text Encoder:                                                                                                                                                      lora.py:905
                    INFO     create LoRA for Text Encoder: 72 modules.                                                                                                                                          lora.py:910
                    INFO     create LoRA for U-Net: 192 modules.                                                                                                                                                lora.py:918
                    INFO     enable LoRA for text encoder                                                                                                                                                       lora.py:961
                    INFO     enable LoRA for U-Net                                                                                                                                                              lora.py:966
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     DownBlock2D False -> True                                                                                                                                                original_unet.py:1521
                    INFO     UNetMidBlock2DCrossAttn False -> True                                                                                                                                    original_unet.py:1521
                    INFO     UpBlock2D False -> True                                                                                                                                                  original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
prepare optimizer, data loader etc.
                    INFO     use Adafactor optimizer | {'relative_step': True}                                                                                                                           train_util.py:4047
                    INFO     relative_step is true / relative_stepがtrueです                                                                                                                             train_util.py:4050
                    WARNING  learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます                                                                                   train_util.py:4052
                    WARNING  unet_lr and text_encoder_lr are ignored / unet_lrとtext_encoder_lrは無視されます                                                                                            train_util.py:4064
                    INFO     use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します                                                                                                     train_util.py:4069
running training / 学習開始
  num train images * repeats / 学習画像の数×繰り返し回数: 80
  num reg images / 正則化画像の数: 0
  num batches per epoch / 1epochのバッチ数: 80
  num epochs / epoch数: 20
  batch size per device / バッチサイズ: 1
  gradient accumulation steps / 勾配を合計するステップ数 = 1
  total optimization steps / 学習ステップ数: 1600
steps:   0%|                                                                                                                                                                                     | 0/1600 [00:00<?, ?it/s]
epoch 1/20
2024-04-26 19:48:09 WARNING  A matching Triton is not available, some optimizations will not be enabled.                                                                                                     __init__.py:55
                             Error caught was: No module named 'triton'                                                                                                                                                    
D:\kohya_ss\venv\lib\site-packages\torch\utils\checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.      
  warnings.warn(
steps:   2%|██▌                                                                                                                                                         | 26/1600 [00:36<36:49,  1.40s/it, avr_loss=0.198]19:48:44-084123 INFO     The running process has been terminated.
19:48:44-978963 INFO     Training has ended.

Here is a copy of the json config that use the test images and folders in the kohya_ss folder itself... so they should run as is on your computer. It they don't work then the problem is with the software / drivers installed on your machine.

LoraLowVRAMSettings-test.json

bulb1czek commented 6 months ago

Well... it train just fine on my system. Here is the log for the training:

19:44:45-473702 INFO     Kohya_ss GUI version: v24.0.8
19:44:45-959154 INFO     Submodule initialized and updated.
19:44:45-962152 INFO     nVidia toolkit detected
19:44:48-865444 INFO     Torch 2.1.2+cu118
19:44:48-887051 INFO     Torch backend: nVidia CUDA 11.8 cuDNN 8905
19:44:48-890059 INFO     Torch detected GPU: NVIDIA GeForce RTX 3090 VRAM 24576 Arch (8, 6) Cores 82
19:44:48-894054 INFO     Python version is 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)]
19:44:48-895054 INFO     Verifying modules installation status from requirements_pytorch_windows.txt...
19:44:48-902213 INFO     Verifying modules installation status from requirements_windows.txt...
19:44:48-907725 INFO     Verifying modules installation status from requirements.txt...
19:44:59-575359 INFO     headless: False
19:44:59-631209 INFO     Using shell=True when running external commands...
Running on local URL:  http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.
19:46:07-684896 INFO     Loading config...
19:47:43-236310 INFO     Start training LoRA Standard ...
19:47:43-238310 INFO     Validating lr scheduler arguments...
19:47:43-239313 INFO     Validating optimizer arguments...
19:47:43-240311 INFO     Validating model file or folder path runwayml/stable-diffusion-v1-5 existence...
19:47:43-241310 INFO     ...huggingface.co model, skipping validation
19:47:43-242310 INFO     Validating output_dir path D:/kohya_ss/outputs existence...
19:47:43-242310 INFO     ...valid
19:47:43-243309 INFO     Validating train_data_dir path D:/kohya_ss/test/img existence...
19:47:43-244310 INFO     ...valid
19:47:43-245309 INFO     reg_data_dir not specified, skipping validation
19:47:43-245309 INFO     Validating logging_dir path D:/kohya_ss/outputs/Otter/logs existence...
19:47:43-247311 INFO     ...created folder at D:/kohya_ss/outputs/Otter/logs
19:47:43-248542 INFO     log_tracker_config not specified, skipping validation
19:47:43-249541 INFO     resume not specified, skipping validation
19:47:43-250542 INFO     vae not specified, skipping validation
19:47:43-251542 INFO     network_weights not specified, skipping validation
19:47:43-252544 INFO     dataset_config not specified, skipping validation
19:47:43-253541 INFO     Folder 10_darius kawasaki person: 10 repeats found
19:47:43-255541 INFO     Folder 10_darius kawasaki person: 8 images found
19:47:43-256542 INFO     Folder 10_darius kawasaki person: 8 * 10 = 80 steps
19:47:43-257544 INFO     Regulatization factor: 1
19:47:43-258544 INFO     Total steps: 80
19:47:43-259543 INFO     Train batch size: 1
19:47:43-260541 INFO     Gradient accumulation steps: 1
19:47:43-261544 INFO     Epoch: 1
19:47:43-262544 INFO     Max train steps: 1600
19:47:43-263544 INFO     stop_text_encoder_training = 0
19:47:43-264551 INFO     lr_warmup_steps = 0
19:47:43-266550 INFO     Saving training config to D:/kohya_ss/outputs\Otter_20240426-194743.json...
19:47:43-268549 INFO     Executing command: "D:\kohya_ss\venv\Scripts\accelerate.EXE" launch --dynamo_backend no --dynamo_mode default --mixed_precision fp16 --num_processes 1 --num_machines 1
                         --num_cpu_threads_per_process 2 "D:/kohya_ss/sd-scripts/train_network.py" --config_file "./outputs/tmpfilelora.toml" with shell=True
19:47:43-275550 INFO     Command executed.
2024-04-26 19:47:50 WARNING  A matching Triton is not available, some optimizations will not be enabled.                                                                                                     __init__.py:55
                             Error caught was: No module named 'triton'                                                                                                                                                    
2024-04-26 19:47:52 INFO     Loading settings from ./outputs/tmpfilelora.toml...                                                                                                                         train_util.py:3744
                    INFO     ./outputs/tmpfilelora                                                                                                                                                       train_util.py:3763
2024-04-26 19:47:52 INFO     prepare tokenizer                                                                                                                                                           train_util.py:4227
2024-04-26 19:47:53 INFO     update token length: 75                                                                                                                                                     train_util.py:4244
                    INFO     Using DreamBooth method.                                                                                                                                                  train_network.py:172
                    INFO     prepare images.                                                                                                                                                             train_util.py:1572
                    INFO     found directory D:\kohya_ss\test\img\10_darius kawasaki person contains 8 image files                                                                                       train_util.py:1519
                    INFO     80 train images with repeating.                                                                                                                                             train_util.py:1613
                    INFO     0 reg images.                                                                                                                                                               train_util.py:1616
                    WARNING  no regularization images / 正則化画像が見つかりませんでした                                                                                                                 train_util.py:1621
                    INFO     [Dataset 0]                                                                                                                                                                 config_util.py:565
                               batch_size: 1                                                                                                                                                                               
                               resolution: (512, 512)                                                                                                                                                                      
                               enable_bucket: True                                                                                                                                                                         
                               network_multiplier: 1.0                                                                                                                                                                     
                               min_bucket_reso: 256                                                                                                                                                                        
                               max_bucket_reso: 2048                                                                                                                                                                       
                               bucket_reso_steps: 64                                                                                                                                                                       
                               bucket_no_upscale: True                                                                                                                                                                     

                               [Subset 0 of Dataset 0]                                                                                                                                                                     
                                 image_dir: "D:\kohya_ss\test\img\10_darius kawasaki person"                                                                                                                               
                                 image_count: 8                                                                                                                                                                            
                                 num_repeats: 10                                                                                                                                                                           
                                 shuffle_caption: False                                                                                                                                                                    
                                 keep_tokens: 0                                                                                                                                                                            
                                 keep_tokens_separator:                                                                                                                                                                    
                                 secondary_separator: None                                                                                                                                                                 
                                 enable_wildcard: False                                                                                                                                                                    
                                 caption_dropout_rate: 0.0                                                                                                                                                                 
                                 caption_dropout_every_n_epoches: 0                                                                                                                                                        
                                 caption_tag_dropout_rate: 0.0                                                                                                                                                             
                                 caption_prefix: None                                                                                                                                                                      
                                 caption_suffix: None                                                                                                                                                                      
                                 color_aug: False                                                                                                                                                                          
                                 flip_aug: False                                                                                                                                                                           
                                 face_crop_aug_range: None                                                                                                                                                                 
                                 random_crop: False                                                                                                                                                                        
                                 token_warmup_min: 1,                                                                                                                                                                      
                                 token_warmup_step: 0,                                                                                                                                                                     
                                 is_reg: False                                                                                                                                                                             
                                 class_tokens: darius kawasaki person                                                                                                                                                      
                                 caption_extension: .txt                                                                                                                                                                   

                    INFO     [Dataset 0]                                                                                                                                                                 config_util.py:571
                    INFO     loading image sizes.                                                                                                                                                         train_util.py:853
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<00:00, 331.32it/s]
                    INFO     make buckets                                                                                                                                                                 train_util.py:859
                    WARNING  min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically /                                    train_util.py:876
                             bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます                                                         
                    INFO     number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)                                                                                              train_util.py:905
                    INFO     bucket 0: resolution (512, 512), count: 80                                                                                                                                   train_util.py:910
                    INFO     mean ar error (without repeats): 0.0                                                                                                                                         train_util.py:915
                    INFO     preparing accelerator                                                                                                                                                     train_network.py:225
accelerator device: cuda
                    INFO     loading model for process 0/1                                                                                                                                               train_util.py:4385
                    INFO     load Diffusers pretrained models: runwayml/stable-diffusion-v1-5                                                                                                            train_util.py:4347
Loading pipeline components...: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 10.24it/s]
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .      
2024-04-26 19:47:54 INFO     UNet2DConditionModel: 64, 8, 768, False, False                                                                                                                           original_unet.py:1387
2024-04-26 19:48:01 INFO     U-Net converted to original U-Net                                                                                                                                           train_util.py:4372
2024-04-26 19:48:02 INFO     Enable memory efficient attention for U-Net                                                                                                                                 train_util.py:2657
import network module: networks.lora
                    INFO     [Dataset 0]                                                                                                                                                                 train_util.py:2079
                    INFO     caching latents.                                                                                                                                                             train_util.py:974
                    INFO     checking cache validity...                                                                                                                                                   train_util.py:984
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:00<?, ?it/s] 
                    INFO     caching latents...                                                                                                                                                          train_util.py:1021
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:02<00:00,  3.35it/s] 
2024-04-26 19:48:06 INFO     create LoRA network. base dim (rank): 8, alpha: 1                                                                                                                                  lora.py:810
                    INFO     neuron dropout: p=None, rank dropout: p=None, module dropout: p=None                                                                                                               lora.py:811
                    INFO     create LoRA for Text Encoder:                                                                                                                                                      lora.py:905
                    INFO     create LoRA for Text Encoder: 72 modules.                                                                                                                                          lora.py:910
                    INFO     create LoRA for U-Net: 192 modules.                                                                                                                                                lora.py:918
                    INFO     enable LoRA for text encoder                                                                                                                                                       lora.py:961
                    INFO     enable LoRA for U-Net                                                                                                                                                              lora.py:966
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     CrossAttnDownBlock2D False -> True                                                                                                                                       original_unet.py:1521
                    INFO     DownBlock2D False -> True                                                                                                                                                original_unet.py:1521
                    INFO     UNetMidBlock2DCrossAttn False -> True                                                                                                                                    original_unet.py:1521
                    INFO     UpBlock2D False -> True                                                                                                                                                  original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
                    INFO     CrossAttnUpBlock2D False -> True                                                                                                                                         original_unet.py:1521
prepare optimizer, data loader etc.
                    INFO     use Adafactor optimizer | {'relative_step': True}                                                                                                                           train_util.py:4047
                    INFO     relative_step is true / relative_stepがtrueです                                                                                                                             train_util.py:4050
                    WARNING  learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます                                                                                   train_util.py:4052
                    WARNING  unet_lr and text_encoder_lr are ignored / unet_lrとtext_encoder_lrは無視されます                                                                                            train_util.py:4064
                    INFO     use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します                                                                                                     train_util.py:4069
running training / 学習開始
  num train images * repeats / 学習画像の数×繰り返し回数: 80
  num reg images / 正則化画像の数: 0
  num batches per epoch / 1epochのバッチ数: 80
  num epochs / epoch数: 20
  batch size per device / バッチサイズ: 1
  gradient accumulation steps / 勾配を合計するステップ数 = 1
  total optimization steps / 学習ステップ数: 1600
steps:   0%|                                                                                                                                                                                     | 0/1600 [00:00<?, ?it/s]
epoch 1/20
2024-04-26 19:48:09 WARNING  A matching Triton is not available, some optimizations will not be enabled.                                                                                                     __init__.py:55
                             Error caught was: No module named 'triton'                                                                                                                                                    
D:\kohya_ss\venv\lib\site-packages\torch\utils\checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.      
  warnings.warn(
steps:   2%|██▌                                                                                                                                                         | 26/1600 [00:36<36:49,  1.40s/it, avr_loss=0.198]19:48:44-084123 INFO     The running process has been terminated.
19:48:44-978963 INFO     Training has ended.

Here is a copy of the json config that use the test images and folders in the kohya_ss folder itself... so they should run as is on your computer. It they don't work then the problem is with the software / drivers installed on your machine.

Otter_20240427-121803.json this is the json i get btw (which im definietly sure that it is the config?) LoraLowVRAMSettings-test.json

seems to be a issue on my end, i appreciate you doing ur best. Have a nice day!