Closed changwoomon closed 3 years ago
Python list vs Numpy array (C)
파이썬은 값을 하나씩 처리하지만 넘파이는 병렬적으로 처리한다.
How Fast Numpy Really is and Why?
code 결과
vec1: [0.1 0.325 0.55 0.775 1. ] array: [0.1 0.325 0.55 -- 1.0] masked_array: [0.1 0.325 0.55 -- 1.0] masked_outside: [-- 0.325 0.55 0.775 --] vec2: [0, 1, 2, 3, 4, -9999] masked_values: [0 1 2 3 4 --] masked_values & filled: [ 0 1 2 3 4 5555]
Ray (num_cpus=1)
Ray (num_cpus=2)
Sequential
weight
('weight', Parameter containing: tensor([[[[ 0.1672, -0.1517, -0.1711], [ 0.1280, -0.1407, 0.3215], [-0.1074, 0.2512, 0.2103]]], [[[ 0.0602, 0.2026, 0.0181], [ 0.1411, 0.0426, 0.1177], [-0.0267, 0.1855, 0.0767]]], [[[ 0.3355, 0.0562, -0.5521], [-0.1873, 0.0618, -0.2184], [-0.0807, 0.2019, 0.4228]]], [[[ 0.3663, -0.0216, 0.2986], [ 0.1475, 0.4550, 0.3350], [-0.6378, -0.6662, -0.2658]]], [[[ 0.2871, 0.1041, 0.2666], [ 0.0158, 0.4709, -0.2112], [ 0.4000, 0.0856, -0.3989]]], [[[ 0.4908, 0.0509, 0.2348], [-0.3349, -0.2446, -0.7014], [-0.6735, -0.3921, -0.2518]]]], requires_grad=True))
bias
('bias', Parameter containing: tensor([ 0.1874, 0.0468, 0.0102, -0.1306, 0.2191, 0.4025], requires_grad=True))
weight_orig
('weight_orig', Parameter containing: tensor([[[[ 0.1672, -0.1517, -0.1711], [ 0.1280, -0.1407, 0.3215], [-0.1074, 0.2512, 0.2103]]], [[[ 0.0602, 0.2026, 0.0181], [ 0.1411, 0.0426, 0.1177], [-0.0267, 0.1855, 0.0767]]], [[[ 0.3355, 0.0562, -0.5521], [-0.1873, 0.0618, -0.2184], [-0.0807, 0.2019, 0.4228]]], [[[ 0.3663, -0.0216, 0.2986], [ 0.1475, 0.4550, 0.3350], [-0.6378, -0.6662, -0.2658]]], [[[ 0.2871, 0.1041, 0.2666], [ 0.0158, 0.4709, -0.2112], [ 0.4000, 0.0856, -0.3989]]], [[[ 0.4908, 0.0509, 0.2348], [-0.3349, -0.2446, -0.7014], [-0.6735, -0.3921, -0.2518]]]], requires_grad=True))
bias_orig
('bias_orig', Parameter containing: tensor([ 0.1874, 0.0468, 0.0102, -0.1306, 0.2191, 0.4025], requires_grad=True))
🤷♀️Further Question🤷♀️
(6강) 빠르게
2) 두 계산에 차이가 발생하는 이유는 뭘까?(p 4)
Python list vs Numpy array (C)
파이썬은 값을 하나씩 처리하지만 넘파이는 병렬적으로 처리한다.
How Fast Numpy Really is and Why?
3) Compression과 acceleration의 관계는? (p 22)
(7강) 가지치기
2) Mask는 언제 사용하는게 유용할까? (p 4)
code 결과
3) Lottery Ticket Hypothesis의 key idea는 무엇인가? (p 28)
❓ Toy code
(6강) toy code
Q) 속도 체감이 안되는데..?
Ray (num_cpus=1)
Ray (num_cpus=2)
Sequential
(7강) toy code
Q) weight, bias, weight_orig, bias_orig의 차이는..?
weight
bias
weight_orig
bias_orig