Open kokeliang opened 1 year ago
It's a bit hard to say without more info/code. Also, this might be more for the Google group - if you want to join please make sure to give a reason as I reject other requests as spam.
hello @dellaert. Thank you for your fast reply. I printed smoother.getFactors().size()
and smoother.getFactors().nrFactors()
after the marginalization (see line 170 in /gtsam_unstable/nonlinear/tests/testIncrementalFixedLagSmoother.cpp
). The result is as following:
factorgraph size: 9 factorgraph non-null size: 9
factorgraph size: 11 factorgraph non-null size: 9
factorgraph size: 13 factorgraph non-null size: 9
factorgraph size: 15 factorgraph non-null size: 8
factorgraph size: 17 factorgraph non-null size: 8
factorgraph size: 19 factorgraph non-null size: 8
factorgraph size: 21 factorgraph non-null size: 8
factorgraph size: 23 factorgraph non-null size: 8
factorgraph size: 25 factorgraph non-null size: 8
There were no test failures
factorgraph size
keeps growing and causes memory to grow while factorgraph non-null size
is stable after marginalization works.
The codes from/gtsam_unstable/nonlinear/tests/testIncrementalFixedLagSmoother.cpp
:
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testIncrementalFixedLagSmoother.cpp
* @brief Unit tests for the Incremental Fixed-Lag Smoother
* @author Stephen Williams (swilliams8@gatech.edu)
* @date May 23, 2012
*/
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/debug.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
Key MakeKey(size_t index) { return Symbol('x', index); }
/* ************************************************************************* */
bool check_smoother(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const IncrementalFixedLagSmoother& smoother, const Key& key) {
GaussianFactorGraph linearized = *fullgraph.linearize(fullinit);
VectorValues delta = linearized.optimize();
Values fullfinal = fullinit.retract(delta);
Point2 expected = fullfinal.at<Point2>(key);
Point2 actual = smoother.calculateEstimate<Point2>(key);
return assert_equal(expected, actual);
}
/* ************************************************************************* */
TEST( IncrementalFixedLagSmoother, Example )
{
// Test the IncrementalFixedLagSmoother in a pure linear environment. Thus, full optimization and
// the IncrementalFixedLagSmoother should be identical (even with the linearized approximations at
// the end of the smoothing lag)
SETDEBUG("IncrementalFixedLagSmoother update", true);
// Set up parameters
SharedDiagonal odometerNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
SharedDiagonal loopNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
// Create a Fixed-Lag Smoother
typedef IncrementalFixedLagSmoother::KeyTimestampMap Timestamps;
IncrementalFixedLagSmoother smoother(7.0, ISAM2Params());
// Create containers to keep the full graph
Values fullinit;
NonlinearFactorGraph fullgraph;
// i keeps track of the time step
size_t i = 0;
// Add a prior at time 0 and update the HMF
{
Key key0 = MakeKey(0);
NonlinearFactorGraph newFactors;
Values newValues;
Timestamps newTimestamps;
newFactors.addPrior(key0, Point2(0.0, 0.0), odometerNoise);
newValues.insert(key0, Point2(0.01, 0.01));
newTimestamps[key0] = 0.0;
fullgraph.push_back(newFactors);
fullinit.insert(newValues);
// Update the smoother
smoother.update(newFactors, newValues, newTimestamps);
// Check
CHECK(check_smoother(fullgraph, fullinit, smoother, key0));
++i;
}
// Add odometry from time 0 to time 5
while(i <= 5) {
Key key1 = MakeKey(i-1);
Key key2 = MakeKey(i);
NonlinearFactorGraph newFactors;
Values newValues;
Timestamps newTimestamps;
newFactors.push_back(BetweenFactor<Point2>(key1, key2, Point2(1.0, 0.0), odometerNoise));
newValues.insert(key2, Point2(double(i)+0.1, -0.1));
newTimestamps[key2] = double(i);
fullgraph.push_back(newFactors);
fullinit.insert(newValues);
// Update the smoother
smoother.update(newFactors, newValues, newTimestamps);
// Check
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
++i;
}
// Add odometry from time 5 to 6 to the HMF and a loop closure at time 5 to the TSM
{
// Add the odometry factor to the HMF
Key key1 = MakeKey(i-1);
Key key2 = MakeKey(i);
NonlinearFactorGraph newFactors;
Values newValues;
Timestamps newTimestamps;
newFactors.push_back(BetweenFactor<Point2>(key1, key2, Point2(1.0, 0.0), odometerNoise));
newFactors.push_back(BetweenFactor<Point2>(MakeKey(2), MakeKey(5), Point2(3.5, 0.0), loopNoise));
newValues.insert(key2, Point2(double(i)+0.1, -0.1));
newTimestamps[key2] = double(i);
fullgraph.push_back(newFactors);
fullinit.insert(newValues);
// Update the smoother
smoother.update(newFactors, newValues, newTimestamps);
// Check
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
++i;
}
// Add odometry from time 6 to time 15
while(i <= 15) {
Key key1 = MakeKey(i-1);
Key key2 = MakeKey(i);
NonlinearFactorGraph newFactors;
Values newValues;
Timestamps newTimestamps;
newFactors.push_back(BetweenFactor<Point2>(key1, key2, Point2(1.0, 0.0), odometerNoise));
newValues.insert(key2, Point2(double(i)+0.1, -0.1));
newTimestamps[key2] = double(i);
fullgraph.push_back(newFactors);
fullinit.insert(newValues);
// Update the smoother
smoother.update(newFactors, newValues, newTimestamps);
std::cout << "factorgraph size: "<< smoother.getFactors().size()
<< " factorgraph non-null size: " << smoother.getFactors().nrFactors() << std::endl;
// Check
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
++i;
}
// add/remove an extra factor
{
Key key1 = MakeKey(i-1);
Key key2 = MakeKey(i);
NonlinearFactorGraph newFactors;
Values newValues;
Timestamps newTimestamps;
// add 2 odometry factors
newFactors.push_back(BetweenFactor<Point2>(key1, key2, Point2(1.0, 0.0), odometerNoise));
newFactors.push_back(BetweenFactor<Point2>(key1, key2, Point2(1.0, 0.0), odometerNoise));
newValues.insert(key2, Point2(double(i)+0.1, -0.1));
newTimestamps[key2] = double(i);
fullgraph.push_back(newFactors);
fullinit.insert(newValues);
// Update the smoother
smoother.update(newFactors, newValues, newTimestamps);
// Check
CHECK(check_smoother(fullgraph, fullinit, smoother, key2));
// now remove one of the two and try again
// empty values and new factors for fake update in which we only remove factors
NonlinearFactorGraph emptyNewFactors;
Values emptyNewValues;
Timestamps emptyNewTimestamps;
size_t factorIndex = 25; // any index that does not break connectivity of the graph
FactorIndices factorToRemove;
factorToRemove.push_back(factorIndex);
const NonlinearFactorGraph smootherFactorsBeforeRemove = smoother.getFactors();
// remove factor
smoother.update(emptyNewFactors, emptyNewValues, emptyNewTimestamps,factorToRemove);
// Note: the following test (checking that the number of factor is reduced by 1)
// fails since we are not reusing slots, hence also when removing a factor we do not change
// the size of the factor graph
// size_t nrFactorsAfterRemoval = smoother.getFactors().size();
// DOUBLES_EQUAL(nrFactorsBeforeRemoval-1, nrFactorsAfterRemoval, 1e-5);
// check that the factors in the smoother are right
NonlinearFactorGraph actual = smoother.getFactors();
for(size_t i=0; i< smootherFactorsBeforeRemove.size(); i++){
// check that the factors that were not removed are there
if(smootherFactorsBeforeRemove[i] && i != factorIndex){
EXPECT(smootherFactorsBeforeRemove[i]->equals(*actual[i]));
}
else{ // while the factors that were not there or were removed are no longer there
EXPECT(!actual[i]);
}
}
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */
Has this problem been solved?
Description
Hello. I am using gtsam::IncrementalFixedLagSmoother for marginalization. I think the marginalization worked but memory keeps growing.
gtsam::IncrementalFixedLagSmoother optimizer; . . . optimizer.update(graphFactors, graphValues, smootherTimestamps); std::cout << "factorgraph size: << optimizer.getFactors().size() << "factorgraph non-null size: " << optimizer.getFactors().nrFactors() << std::endl;
factorgraph size
keeps growing and causes memory to grow whilefactorgraph non-null size
is stable after marginalization works.Is this a problem with gtsam or something wrong with my marginalization code? Thanks a lot for all replies.