borisbanushev / stockpredictionai

In this noteboook I will create a complete process for predicting stock price movements. Follow along and we will achieve some pretty good results. For that purpose we will use a Generative Adversarial Network (GAN) with LSTM, a type of Recurrent Neural Network, as generator, and a Convolutional Neural Network, CNN, as a discriminator. We use LSTM for the obvious reason that we are trying to predict time series data. Why we use GAN and specifically CNN as a discriminator? That is a good question: there are special sections on that later.
4.27k stars 1.67k forks source link

can say this is a joke? #372

Open raidgpt opened 6 months ago

raidgpt commented 6 months ago

"take 17 (sequence_length) days of data (again, the data being the stock price for GS stock every day + all the other feature for that day - correlated assets, sentiment, etc.) and try to predict the 18th day." after more epoch, you know everything. Can give the one time prediction results for the new data?