This adds a probabilistic kwarg to the Dense, DenseRegression, and Embedding modules. When probabilistic=True, Normal distributions are used for the variational posteriors, but when probabilistic=False, Deterministic distributions are used instead.
Also updates some callbacks to track walltime, adds calibration methods (calibration_curve, calibration_curve_plot, and expected_calibration_error) to ContinuousModel, and adds a Neural Linear Model example which uses these features.
This adds a probabilistic kwarg to the
Dense
,DenseRegression
, andEmbedding
modules. Whenprobabilistic=True
,Normal
distributions are used for the variational posteriors, but whenprobabilistic=False
,Deterministic
distributions are used instead.Also updates some callbacks to track walltime, adds calibration methods (
calibration_curve
,calibration_curve_plot
, andexpected_calibration_error
) toContinuousModel
, and adds a Neural Linear Model example which uses these features.Will fix https://github.com/brendanhasz/probflow/issues/18
So, all in all:
probabilistic
keyword argument toDense
,DenseRegression
, andEmbedding
modules.MonitorMetric
andMonitorELBO
to also track walltimeContinuousModel
:calibration_curve
,calibration_curve_plot
, andexpected_calibration_error
MultivariateNormalParameter
for PyTorch (by implementingprobflow.utils.ops.log_cholesky_transform
for pytorch)