Open fengdoudou1895 opened 4 years ago
This is because of the fact that softmax is shift-invariant by a constant offset in the input.
softmax is invariant under translation by the same value in each coordinate See wikipedia and a StackOverflow answer.
Deducing the maximum value in the attention_logits allows a faster and more stable numerical computation.
在HAN的attention里面看到:
attetion_logits = tf.reduce_sum(hidden_state_context_similarity,axis = 2) attention_logits_max = tf.reduce_max(attention_logits, axis = 1,keep_dims = True) p_attention = tf.nn.softmax(attetion_logits-attention_logits_max)
原论文里没看到这个操作,请问这是为什么呢?