brightmart / text_classification

all kinds of text classification models and more with deep learning
MIT License
7.87k stars 2.57k forks source link

HAN的attention里为什么加reduce_sum和reduce_max? #139

Open fengdoudou1895 opened 4 years ago

fengdoudou1895 commented 4 years ago

在HAN的attention里面看到: attetion_logits = tf.reduce_sum(hidden_state_context_similarity,axis = 2) attention_logits_max = tf.reduce_max(attention_logits, axis = 1,keep_dims = True) p_attention = tf.nn.softmax(attetion_logits-attention_logits_max) 原论文里没看到这个操作,请问这是为什么呢?

acadTags commented 4 years ago

This is because of the fact that softmax is shift-invariant by a constant offset in the input.

softmax is invariant under translation by the same value in each coordinate See wikipedia and a StackOverflow answer.

Deducing the maximum value in the attention_logits allows a faster and more stable numerical computation.