brinckmann / montepython_public

Public repository for the Monte Python Code
MIT License
93 stars 80 forks source link

CMB S4 likelihood for LCDM+massive neutrinos #262

Closed ptaule closed 2 years ago

ptaule commented 2 years ago

Hello,

I'm trying to use the CMB-S4 mock likelihood in combination with fake planck likelihoods as in 1808.05955, for LCDM with massive neutrinos, but I repeatedly obtain chains with very low acceptance rate of 0.1 - 1%, even after tens of thousands of steps. I have tried with/without --superupdate 20 and also turning on/off the ncdm fluid approximation in CLASS, with no luck. Do you have an idea what could be the issue?

This is the input file I use, from which also the fiducial files are created. I give also the input covmat -c covmat/base2018TTTEEE.covmat when running the chains.

data.experiments=['fake_planck_realistic_lowl', 'fake_planck_realistic_highl_fsky0p17', 'cmb_s4_highl']

data.parameters['omega_b']              = [ 2.2387   , None  , None , 0.015   , 0.01 , 'cosmo']
data.parameters['omega_cdm']            = [ 0.1198   , None  , None , 0.0013  , 1    , 'cosmo']
data.parameters['100*theta_s']          = [ 1.042    , None  , None , 0.00030 , 1    , 'cosmo']
data.parameters['ln10^{10}A_s']         = [ 3.052    , None  , None , 0.015   , 1    , 'cosmo']
data.parameters['n_s']                  = [ 0.9659   , None  , None , 0.0042  , 1    , 'cosmo']
data.parameters['tau_reio']             = [ 0.05736  , 0.004 , None , 0.008   , 1    , 'cosmo']

data.parameters['m_ncdm']               = [ 0.02        , 0     , 1    , 0.1     , 1    , 'cosmo']

data.parameters['z_reio']       = [1, None, None, 0,     1,   'derived']
data.parameters['Omega_Lambda'] = [1, None, None, 0,     1,   'derived']
data.parameters['YHe']          = [1, None, None, 0,     1,   'derived']
data.parameters['H0']           = [0, None, None, 0,     1,   'derived']
data.parameters['A_s']          = [0, None, None, 0,  1e-9,   'derived']

# Other cosmo parameters (fixed parameters, precision parameters, etc.)

data.cosmo_arguments['sBBN file'] = data.path['cosmo']+'/bbn/sBBN.dat'
data.cosmo_arguments['k_pivot'] = 0.05

data.cosmo_arguments['N_ur'] = 0.00641
data.cosmo_arguments['N_ncdm'] = 1
data.cosmo_arguments['deg_ncdm'] = 3

data.N=10
data.write_step=5

Best, Petter Taule

brinckmann commented 2 years ago

Hi Petter,

Most likely the Planck 2018 covmat isn't sensitive enough, so you're exploring too large a portion of parameter space leading to a poor acceptance rate. Your best bet would be to take the 1-sigma values from 1808.05955 for Planck+S4 and add those as the starting guess sigmas in your param file (fourth entry in the list) without passing an input covmat (which would override those values).

Best, Thejs

ptaule commented 2 years ago

Hi Thejs,

thanks for the reply! It still did not work with the 1-sigma from 1808.05955, but I got it working using the Fisher method + superupdate. Closing