Open noelcodes opened 5 years ago
downgrade to keras=2.0.4 seem to work. But hit into next error at eer = test()
In [21]: eer, , , _ = calc_metrics(tsc, isc) Traceback (most recent call last):
File "
File "D:\xrvision\XRV_projects\Face-identification-with-cnn-triplet-loss\identification.py", line 12, in calc_metrics min_score = np.minimum(np.min(targets_scores), np.min(imposter_scores))
File "C:\Users\Noel Tam\AppData\Local\conda\conda\envs\tripletloss\lib\site-packages\numpy\core\fromnumeric.py", line 2442, in amin initial=initial)
File "C:\Users\Noel Tam\AppData\Local\conda\conda\envs\tripletloss\lib\site-packages\numpy\core\fromnumeric.py", line 83, in _wrapreduction return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
ValueError: zero-size array to reduction operation minimum which has no identity
no matter what, "isc" always comes out empty, which triggers the error. It just seems the model is unable to separate the imposer and target well. I'm stuck here... If i hard code a random value into isc (just to move on), the prediction is meaningless, it doesn't recognize an imposer. So this part is kind of important.
HI I'm stuck here. keras merge keep error me out.
In [13]: tpe, tpe_pred = build_tpe(n_in, n_out, W_pca.T) D:\xrvision\XRV_projects\Face-identification-with-cnn-triplet-loss\model.py:67: UserWarning: Update your
Dense
call to the Keras 2 API:Dense(18, input_dim=18, weights=[array([[-..., activation="linear", use_bias=False)
base_model.add(Dense(n_out, input_dim=n_in, bias=False, weights=[W_pca], activation='linear')) Traceback (most recent call last):File "", line 1, in
tpe, tpe_pred = build_tpe(n_in, n_out, W_pca.T)
File "D:\xrvision\XRV_projects\Face-identification-with-cnn-triplet-loss\model.py", line 75, in build_tpe e = merge([a_emb, p_emb, n_emb], mode=triplet_merge, output_shape=triplet_merge_shape)
TypeError: 'module' object is not callable