bstewart / stm

An R Package for the Structural Topic Model
Other
401 stars 98 forks source link

SearchK Fails and Trouble with Topic Detection on a Set with a Small Number of Documents #284

Open larry77 opened 1 year ago

larry77 commented 1 year ago

Please have a look at the reprex below. You need to download the document feature matrix from

https://e.pcloud.link/publink/show?code=XZmHFDZeObPiNtsGWfzuBlnVw2ryzATt1X7

A couple of things which I do not understand happen

1) when I run stm with 9 topics, some of them appear to yield duplicated results (at least in the top 10 keywords per topic, see the plot generated in the reprex). Any idea why? 2) when I try using the searchK() function from stm to determine the optimal number of topics, I get an error message I cannot decipher.

Maybe this is not a bug, but I am banging my head against the wall and any help is appreciated.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(quanteda)
#> Package version: 3.3.1
#> Unicode version: 15.0
#> ICU version: 72.1
#> Parallel computing: 4 of 4 threads used.
#> See https://quanteda.io for tutorials and examples.
library(stm)
#> stm v1.3.6.1 successfully loaded. See ?stm for help. 
#>  Papers, resources, and other materials at structuraltopicmodel.com
library(RCurl)
library(readtext)
#> 
#> Attaching package: 'readtext'
#> The following object is masked from 'package:quanteda':
#> 
#>     texts
library(tidytext)
library(ggplot2)

## Download the dfm matrix from

## https://e.pcloud.link/publink/show?code=XZmHFDZeObPiNtsGWfzuBlnVw2ryzATt1X7

dfm_mat <- readRDS("dfm_mat.RDS")

## see https://rstudio-pubs-static.s3.amazonaws.com/406792_9287b832dd9e413f97243628cb2f7ddb.html

## convert the dfm to a format suitable to stm.

dfm2stm <- convert(dfm_mat, to = "stm")

model.stm <- stm(dfm2stm$documents, dfm2stm$vocab, K = 9, data = dfm2stm$meta,
                 init.type = "Spectral") 
#> Beginning Spectral Initialization 
#>   Calculating the gram matrix...
#>   Finding anchor words...
#>      .........
#>   Recovering initialization...
#>      ...........................
#> Initialization complete.
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 1 (approx. per word bound = -6.780) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 2 (approx. per word bound = -6.762, relative change = 2.715e-03) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 3 (approx. per word bound = -6.761, relative change = 4.260e-05) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 4 (approx. per word bound = -6.761, relative change = 1.602e-05) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 5 (approx. per word bound = -6.761, relative change = 1.024e-05) 
#> Topic 1: europe, can, european, new, need 
#>  Topic 2: union, need, europe, today, us 
#>  Topic 3: europe, union, work, european, need 
#>  Topic 4: union, need, europe, today, us 
#>  Topic 5: europe, can, european, new, need 
#>  Topic 6: europe, union, work, european, need 
#>  Topic 7: union, need, europe, today, us 
#>  Topic 8: europe, can, european, new, need 
#>  Topic 9: accelerate, union, need, europe, us 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Model Converged

## I make the model tidy.
## See  https://juliasilge.com/blog/sherlock-holmes-stm/

stm_tidy <- tidy(model.stm)

gpl <- stm_tidy  |> 
    group_by(topic)  |> 
    top_n(10, beta)  |> 
    ungroup()  |> 
    mutate(topic = paste0("Topic ", topic),
           term = reorder_within(term, beta, topic))  |> 
    ggplot(aes(term, beta, fill = as.factor(topic))) +
    geom_col(alpha = 0.8, show.legend = FALSE) +
    facet_wrap(~ topic, scales = "free_y") +
    coord_flip() +
    scale_x_reordered() +
    labs(x = NULL, y = expression(beta),
         title = "Highest word probabilities for each topic",
         subtitle = "Different words are associated with different topics")

gpl


## I can fit a model by stm with a chosen number of topics to the data

### Now I try determining the optimal number of topics using the searchK function

### See https://stackoverflow.com/questions/64989642/use-dfm-in-searchk-calcuation

set.seed(02138)

K <- 5:15

 model_search <- searchK(dfm2stm$documents, dfm2stm$vocab, K,
data = dfm2stm$meta)
#> Beginning Spectral Initialization 
#>   Calculating the gram matrix...
#>   Finding anchor words...
#>      .....
#>   Recovering initialization...
#>      ...........................
#> Initialization complete.
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 1 (approx. per word bound = -6.781) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 2 (approx. per word bound = -6.761, relative change = 2.956e-03) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Completing Iteration 3 (approx. per word bound = -6.761, relative change = 2.235e-05) 
#> ...
#> Completed E-Step (0 seconds). 
#> Completed M-Step. 
#> Model Converged
#> Error in missing$docs[[i]]: subscript out of bounds

## This fails but I do not understand why....

sessionInfo()
#> R version 4.3.2 (2023-10-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Debian GNU/Linux 12 (bookworm)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8    
#>  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Brussels
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] ggplot2_3.4.4   tidytext_0.4.1  readtext_0.90   RCurl_1.98-1.13
#> [5] stm_1.3.6.1     quanteda_3.3.1  dplyr_1.1.3    
#> 
#> loaded via a namespace (and not attached):
#>  [1] janeaustenr_1.0.0  utf8_1.2.4         generics_0.1.3     slam_0.1-50       
#>  [5] bitops_1.0-7       stringi_1.7.12     lattice_0.22-5     digest_0.6.33     
#>  [9] magrittr_2.0.3     evaluate_0.23      grid_4.3.2         fastmap_1.1.1     
#> [13] plyr_1.8.9         Matrix_1.6-2       httr_1.4.7         stopwords_2.3     
#> [17] fansi_1.0.5        scales_1.2.1       cli_3.6.1          rlang_1.1.2       
#> [21] tokenizers_0.3.0   munsell_0.5.0      reprex_2.0.2       withr_2.5.2       
#> [25] yaml_2.3.7         tools_4.3.2        reshape2_1.4.4     colorspace_2.1-0  
#> [29] fastmatch_1.1-4    vctrs_0.6.4        R6_2.5.1           lifecycle_1.0.4   
#> [33] stringr_1.5.0      fs_1.6.3           pkgconfig_2.0.3    RcppParallel_5.1.7
#> [37] pillar_1.9.0       gtable_0.3.4       data.table_1.14.8  glue_1.6.2        
#> [41] Rcpp_1.0.11        xfun_0.41          tibble_3.2.1       tidyselect_1.2.0  
#> [45] knitr_1.45         farver_2.1.1       htmltools_0.5.7    SnowballC_0.7.1   
#> [49] rmarkdown_2.25     labeling_0.4.3     compiler_4.3.2

Created on 2023-11-14 with reprex v2.0.2

larry77 commented 11 months ago

Any reaction on this?