Open dogged1021 opened 3 years ago
And here is my config
{'ctrl_cfg': {'alpha_thresh': 15,
'beta_thresh': None,
'env': <dmbrl.env.reachersparse.ReacherSparse3DEnv object at 0x7f5e8286fb90>,
'gym_robotics': False,
'has_constraints': False,
'log_cfg': {},
'opt_cfg': {'ac_cost_fn': <function ReacherSparseConfigModule.ac_cost_fn at 0x7f5e82876e60>,
'cfg': {'alpha': 0.1,
'max_iters': 5,
'num_elites': 40,
'popsize': 400},
'mode': 'CEM',
'obs_cost_fn': <bound method ReacherSparseConfigModule.obs_cost_fn of <reachersparse.ReacherSparseConfigModule object at 0x7f5e8286f850>>,
'plan_hor': 25},
'prop_cfg': {'mode': 'TSinf',
'model_init_cfg': {'model_class': <class 'dmbrl.modeling.models.BNN.BNN'>,
'model_constructor': <bound method ReacherSparseConfigModule.nn_constructor of <reachersparse.ReacherSparseConfigModule object at 0x7f5e8286f850>>,
'num_nets': 5},
'model_train_cfg': {'epochs': 5},
'npart': 20,
'obs_postproc': <function ReacherSparseConfigModule.obs_postproc at 0x7f5e82876c20>,
'targ_proc': <function ReacherSparseConfigModule.targ_proc at 0x7f5e82876cb0>},
'target_value_func': <dmbrl.values.Value.DeepValueFunction object at 0x7f5e8286f650>,
'update_fns': [<bound method ReacherSparseConfigModule.update_goal of <reachersparse.ReacherSparseConfigModule object at 0x7f5e8286f850>>],
'use_value': True,
'value_func': <dmbrl.values.Value.DeepValueFunction object at 0x7f5e8286f790>},
'exp_cfg': {'exp_cfg': {'demo_high_cost': 300,
'demo_load_path': '/home/frankchen/code/mujoco/saved-rl/experts/reachersparse/expert4/logs.mat',
'demo_low_cost': 70,
'gym_robotics': False,
'load_samples': True,
'nrollouts_per_iter': 1,
'ntrain_iters': 100,
'num_demos': 20,
'policy': <dmbrl.controllers.MPC.MPC object at 0x7f5e7c3b8090>,
'ss_buffer_size': 20000,
'use_value': True,
'value': <dmbrl.values.Value.DeepValueFunction object at 0x7f5e8286f790>,
'value_target': <dmbrl.values.Value.DeepValueFunction object at 0x7f5e8286f650>},
'log_cfg': {'logdir': 'log', 'nrecord': 0},
'sim_cfg': {'env': <dmbrl.env.reachersparse.ReacherSparse3DEnv object at 0x7f5e8286fb90>,
'task_hor': 100}},
'val_cfg': {'env': <dmbrl.env.reachersparse.ReacherSparse3DEnv object at 0x7f5e8286fb90>,
'gym_robotics': False,
'log_cfg': {},
'model_init_cfg_val': {'model_class': <class 'dmbrl.modeling.models.BNN.BNN'>,
'model_constructor': <bound method ReacherSparseConfigModule.value_nn_constructor of <reachersparse.ReacherSparseConfigModule object at 0x7f5e8286f850>>,
'num_nets': 5},
'model_train_cfg': {'epochs': 5},
'obs_postproc': <function ReacherSparseConfigModule.obs_postproc at 0x7f5e82876c20>,
'opt_cfg': {},
'prop_cfg': {},
'targ_proc': <function ReacherSparseConfigModule.targ_proc at 0x7f5e82876cb0>,
'update_fns': [<bound method ReacherSparseConfigModule.update_goal of <reachersparse.ReacherSparseConfigModule object at 0x7f5e8286f850>>],
'val_buffer_size': 1000}}
Hi, I am a new learner in Imitation Learning and very interested in the the density model of safe states. First, I ran
<scripts/mbexp.py>
with arguments<-env reachersparse>
, and got the<model.mat>
,<model.nns>
and other files. However, when I ran<scripts/render.py>
with arguments<-env reachersparse -model-dir ./log/2021-7-13 -logdir ./log>
, there was an error :I don't know how and where to provide the
<value_target>
, and where the<vaule_target>
either. Could you please help me to figure this problem? Thanks a lot !!!AND another question is that how to train the initial density model of demonstrations? I cannot find the code ... I'd appreciate it you could tell me about that !!!