budai4medtech / xfetus

xfetus -- A library for ultrasound fetal imaging synthesis using techniques from GANs, transformers, and diffusion models.
6 stars 1 forks source link

Warnings in notebook #15

Closed mxochicale closed 1 year ago

mxochicale commented 1 year ago

https://github.com/mxochicale/medisynth/blob/main/notebooks/difussion-super-resolution-gan/DSRGAN.ipynb

/home/mxochicale/miniconda3/envs/medisynVE/lib/python3.11/site-packages/torchvision/transforms/functional.py:1603: UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends. To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).

warnings.warn( /home/mxochicale/miniconda3/envs/medisynVE/lib/python3.11/site-packages/torch/_tensor.py:1295: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() ret = func(*args, **kwargs)

warnings.warn( /home/mxochicale/miniconda3/envs/medisynVE/lib/python3.11/site-packages/diffusers/configuration_utils.py:135: FutureWarning: Accessing config attribute num_train_timesteps directly via 'DDPMScheduler' object attribute is deprecated. Please access 'num_train_timesteps' over 'DDPMScheduler's config object instead, e.g. 'scheduler.config.num_train_timesteps'. deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)

mxochicale commented 1 year ago

Fixed using transforms.Resize([image_size, image_size], antialias=True) instead of transforms.Resize([image_size, image_size]),