Closed VladPerervenko closed 3 years ago
Windows installs can be challenging. Can you try installing an environment manually?
You can use:
reticulate::py_install(
envname = "r-gluonts",
python_version = "3.7",
packages = c(
"mxnet",
"gluonts==0.8.0",
"pandas",
"numpy",
"pathlib"
),
method = "conda",
pip = TRUE
)
So did not pass. Installed like this: `(base) C:\Users\User>conda create -n r-gluonts1 python==3.7
environment location: C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts1
(base) C:\Users\User>conda activate r-gluonts1 (r-gluonts1) C:\Users\User>pip install --upgrade mxnet~=1.7 gluonts
Successfully installed chardet-3.0.4 colorama-0.4.4 convertdate-2.3.2 cycler-0.10.0 gluonts-0.8.0 graphviz-0.8.4 hijri-converter-2.1.3 holidays-0.11.2 idna-2.6 kiwisolver-1.3.1 korean-lunar-calendar-0.2.1 matplotlib-3.4.2 mxnet-1.7.0.post2 numpy-1.16.6 pandas-1.1.5 pillow-8.3.1 pydantic-1.8.2 pymeeus-0.5.11 pyparsing-2.4.7 python-dateutil-2.8.2 pytz-2021.1 requests-2.18.4 six-1.16.0 toolz-0.11.1 tqdm-4.61.2 typing-extensions-3.10.0.0 urllib3-1.22
(r-gluonts1) C:\Users\User>pip install orjson `
Example in R. `reticulate::use_miniconda(condaenv = "r-gluonts1", required = TRUE) library(modeltime.gluonts) library(tidymodels) library(tidyverse)
model_fit_deepar <- deep_ar( id = "id", freq = "M", prediction_length = 24, lookback_length = 48, epochs = 5 ) %>% set_engine("gluonts_deepar") %>% fit(value ~ ., training(m750_splits))
100%|██████████| 50/50 [00:05<00:00, 9.62it/s, epoch=1/5, avg_epoch_loss=8.12] 100%|██████████| 50/50 [00:04<00:00, 12.00it/s, epoch=2/5, avg_epoch_loss=7.61] 100%|██████████| 50/50 [00:04<00:00, 12.26it/s, epoch=3/5, avg_epoch_loss=7.45] 100%|██████████| 50/50 [00:04<00:00, 12.27it/s, epoch=4/5, avg_epoch_loss=7.39] 100%|██████████| 50/50 [00:04<00:00, 12.27it/s, epoch=5/5, avg_epoch_loss=7.31]
modeltime_table( model_fit_deepar ) %>% modeltime_calibrate(new_data = testing(m750_splits)) %>% modeltime_forecast( new_data = testing(m750_splits), actual_data = m750, conf_interval = 0.95 ) %>% plot_modeltime_forecast(.interactive = FALSE)
` Successfully completed
OK, this is good information. Using the following commands you were able to get a successful installation:
This issue has been resolved. The easiest way is to use:
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
Using conda in terminal:
conda create -n r-gluonts1 python==3.7
pip install --upgrade mxnet~=1.7 gluonts
pip install orjson
The package versions that were successfully installed:
chardet-3.0.4 colorama-0.4.4 convertdate-2.3.2 cycler-0.10.0 gluonts-0.8.0 graphviz-0.8.4 hijri-converter-2.1.3 holidays-0.11.2 idna-2.6 kiwisolver-1.3.1 korean-lunar-calendar-0.2.1 matplotlib-3.4.2 mxnet-1.7.0.post2 numpy-1.16.6 pandas-1.1.5 pillow-8.3.1 pydantic-1.8.2 pymeeus-0.5.11 pyparsing-2.4.7 python-dateutil-2.8.2 pytz-2021.1 requests-2.18.4 six-1.16.0 toolz-0.11.1 tqdm-4.61.2 typing-extensions-3.10.0.0 urllib3-1.22
I will attempt to enforce the package versions that make it easier to install on Windows. I believe Windows gets hung up with PIP searching for compatible packages. I'll run some windows tests.
Right. I think you can close it issue.
OK, so I'm thinking the issue is mxnet >= 1.7
versus compatibility mxnet~=1.7
. I have just revised. Can you try it and see if it works using the R command: install_gluonts(fresh = TRUE)
?
One other point I saw. You will need pathlib
if you intend to save GluonTS models. Please add that to your r-gluonts1 library using
pip install pathlib==1.0.1
Before I close, please try:
remotes::install_github("business-science/modeltime.gluonts") # install latest version
# Install python r-gluonts env
install_gluonts(fresh_install = TRUE)
I try to install: `modeltime.gluonts::install_gluonts(fresh = TRUE)
The conflict is caused by: The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 mxnet 1.7.0.post2 depends on numpy<1.17.0 and >=1.8.2 The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 mxnet 1.7.0.post1 depends on numpy<1.17.0 and >=1.8.2
To fix this you could try to:
ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/user_guide/#fixing-conflicting-dependencies Error: Error installing package(s): "mxnet~=1.7", "gluonts==0.8.0", "numpy==1.17.2", "pandas==1.0.5", "pathlib==1.0.1", "ujson==4.0.2" x Installing gluonts python dependencies... ... failed`
You need to change the function install_gluonts() install_gluontsN <- function (fresh_install = FALSE)#, include_pytorch = FALSE) { if (!check_conda()) { return() } default_pkgs <- c("mxnet~=1.7", "gluonts==0.8.0", "ujson", "pathlib==1.0.1")
# default_pkgs <- c(default_pkgs, "torch==1.9.0", "pytorch-lightning==1.3.8")
#}
if (fresh_install) {
cli::cli_alert_info("Removing conda env `r-gluonts` to setup for fresh install...")
reticulate::conda_remove("r-gluonts")
}
cli::cli_process_start("Installing gluonts python dependencies...")
message("\n")
reticulate::py_install(packages = default_pkgs, envname = "r-gluonts",
method = "conda", conda = "auto", python_version = "3.7.10",
pip = TRUE)
if (!is.null(detect_default_gluonts_env())) {
cli::cli_process_done(msg_done = "The {.field r-gluonts} conda environment has been created.")
cli::cli_alert_info("Please restart your R Session and run {.code library(modeltime.gluonts)} to activate the {.field r-gluonts} environment.")
}
else {
cli::cli_process_failed(msg_failed = "The {.field r-gluonts} conda environment could not be created.")
}
}
Installation torch==1.9.0 and pytorch-lightning==1.3.8 will occur conflict versions. Therefore, or mxnet or torch `(r-gluonts1) C:\Users\User>pip install torch==1.9.0 pytorch-lightning==1.3.8
Successfully built future Installing collected packages: pyasn1, charset-normalizer, zipp, rsa, requests, pyasn1-modules, oauthlib, multidict, cachetools, yarl, requests-oauthlib, importlib-metadata, google-auth, attrs, async-timeout, werkzeug, torch, tensorboard-plugin-wit, protobuf, packaging, numpy, markdown, grpcio, google-auth-oauthlib, fsspec, aiohttp, absl-py, torchmetrics, tensorboard, PyYAML, pyDeprecate, future, pytorch-lightning Attempting uninstall: requests Found existing installation: requests 2.18.4 Uninstalling requests-2.18.4: Successfully uninstalled requests-2.18.4 Attempting uninstall: numpy Found existing installation: numpy 1.16.6 Uninstalling numpy-1.16.6: Successfully uninstalled numpy-1.16.6 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. mxnet 1.7.0.post2 requires numpy<1.17.0,>=1.8.2, but you have numpy 1.21.1 which is incompatible. mxnet 1.7.0.post2 requires requests<2.19.0,>=2.18.4, but you have requests 2.26.0 which is incompatible. Successfully installed PyYAML-5.4.1 absl-py-0.13.0 aiohttp-3.7.4.post0 async-timeout-3.0.1 attrs-21.2.0 cachetools-4.2.2 charset-normalizer-2.0.3 fsspec-2021.7.0 future-0.18.2 google-auth-1.33.0 google-auth-oauthlib-0.4.4 grpcio-1.38.1 importlib-metadata-4.6.1 markdown-3.3.4 multidict-5.1.0 numpy-1.21.1 oauthlib-3.1.1 packaging-21.0 protobuf-3.17.3 pyDeprecate-0.3.0 pyasn1-0.4.8 pyasn1-modules-0.2.8 pytorch-lightning-1.3.8 requests-2.26.0 requests-oauthlib-1.3.0 rsa-4.7.2 tensorboard-2.4.1 tensorboard-plugin-wit-1.8.0 torch-1.9.0 torchmetrics-0.4.1 werkzeug-2.0.1 yarl-1.6.3 zipp-3.5.0 `
Ok, I see the issue. mxnet 1.7
is limiting numpy
, which conflicts with torch
. So, what I've done is upped mxnet~=1.8
, which should resolve the numpy conflict with torch.
Please try:
remotes::install_github("business-science/modeltime.gluonts") # install latest version
# Install python r-gluonts env
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
Hang tight, I'm seeing errors on Windows now.
It is easier to spread the mxnet and torch in different environments and work with either one or the other. mxnet 1.8.0 is not yet available. Let's wait for mxnet 2.0.
Right, I see that now. Apparently mxnet 1.8
is not available for Windows, which is unfortunate because it solves the numpy dependency issue.
Starting in gluonts 0.8.0
, pytorch is integrated. So you will need both mxnet
, torch
, and pytorch_lightning
in the same environment to access the Torch DeepAR.
Ok, I believe I have fixed the Windows Installation Error here. https://github.com/business-science/modeltime.gluonts/commit/3dace46e04c0b560c86d17d24dd84e8f5b8cd491
The Test Passes on Windows here: https://github.com/business-science/modeltime.gluonts/runs/3107989676?check_suite_focus=true
I adjusted the requirements to be:
The easy way to set up is run this:
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
@VladPerervenko can you test that the install function works for you?
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
moment
Try install: `remotes::install_github("business-science/modeltime.gluonts") modeltime.gluonts::install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
The conflict is caused by: The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 mxnet 1.7.0.post2 depends on numpy<1.17.0 and >=1.8.2 The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 mxnet 1.7.0.post1 depends on numpy<1.17.0 and >=1.8.2
To fix this you could try to:
ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/user_guide/#fixing-conflicting-dependencies Error: Error installing package(s): "mxnet~=1.7", "gluonts==0.8.0", "numpy==1.17.2", "pandas==1.0.5", "pathlib==1.0.1", "ujson==4.0.2", "torch~=1.6", "pytorch-lightning~=1.1"`
Can install numpy~=1.16?
With numpy 1.16, nothing is installed. It just hangs.
That's it. I want to see if I can loosen numpy. Will take a bit since away from my computer.
Good. I will try only with the mxnet
Got the same issue on my machine. Full reinstall of python and Anaconda followed by reboot does not resolve the problem.
Tried with install_gluonts(fresh_install = TRUE, include_pytorch = TRUE) as previously suggested but got the same error.
The conflict is caused by: The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 mxnet 1.7.0.post2 depends on numpy<1.17.0 and >=1.8.2
Yes, this is due to numpy requirements for mxnet. I'll see if I can loosen the requirements. Hang tight.
After few more attempts, I finally got it. Used the conda prompt and ran consecutively these commands:
conda create -n r-gluonts1 python==3.7 conda activate r-gluonts1 pip install --upgrade mxnet~=1.7 gluonts pip install orjson
The exact same steps failed twice before succeeding the third time.
It used to throw this error:
RuntimeError: Broken toolchain: cannot link a simple C program
----------------------------------------
Rolling back uninstall of numpy Moving to c:\programdata\anaconda3\lib\site-packages\numpy-1.20.3.dist-info\ from C:\ProgramData\Anaconda3\Lib\site-packages\~umpy-1.20.3.dist-info Moving to c:\programdata\anaconda3\lib\site-packages\numpy\ from C:\ProgramData\Anaconda3\Lib\site-packages\~umpy Moving to c:\programdata\anaconda3\scripts\f2py-script.py from C:\Users\metod\AppData\Local\Temp\pip-uninstall-18xopcm9\f2py-script.py Moving to c:\programdata\anaconda3\scripts\f2py.exe from C:\Users\metod\AppData\Local\Temp\pip-uninstall-18xopcm9\f2py.exe
I have no idea how it worked out at the end...
While you can use only with mxnet. By the way, it is impossible to use torch(R) insted of Torch(Python)?
@Met0o I've just updated to allow numpy
to be whatever version that PIP sees fit. I'm hopeful that it works now. I have tested on Windows, and it passes but so did the other tests. Please try:
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
Successfully installed PyYAML-5.4.1 absl-py-0.13.0 aiohttp-3.7.4.post0 async-timeout-3.0.1 attrs-21.2.0 cachetools-4.2.2 chardet-3.0.4 colorama-0.4.4 convertdate-2.3.2 cycler-0.10.0 fsspec-2021.7.0 future-0.18.2 gluonts-0.8.0 google-auth-1.33.1 google-auth-oauthlib-0.4.4 graphviz-0.8.4 grpcio-1.39.0 hijri-converter-2.1.3 holidays-0.11.2 idna-2.6 importlib-metadata-4.6.1 kiwisolver-1.3.1 korean-lunar-calendar-0.2.1 markdown-3.3.4 matplotlib-3.4.2 multidict-5.1.0 mxnet-1.7.0.post2 numpy-1.21.1 oauthlib-3.1.1 packaging-21.0 pandas-1.0.5 pathlib-1.0.1 pillow-8.3.1 protobuf-3.17.3 pyDeprecate-0.3.0 pyasn1-0.4.8 pyasn1-modules-0.2.8 pydantic-1.8.2 pymeeus-0.5.11 pyparsing-2.4.7 python-dateutil-2.8.2 pytorch-lightning-1.3.8 pytz-2021.1 requests-2.18.4 requests-oauthlib-1.3.0 rsa-4.7.2 six-1.16.0 tensorboard-2.4.1 tensorboard-plugin-wit-1.8.0 toolz-0.11.1 torch-1.9.0 torchmetrics-0.4.1 tqdm-4.61.2 typing-extensions-3.10.0.0 ujson-4.0.2 urllib3-1.22 werkzeug-2.0.1 yarl-1.6.3 zipp-3.5.0
While you can use only with mxnet. By the way, it is impossible to use torch(R) insted of Torch(Python)?
@VladPerervenko The R implementation is different than Pytorch. We can't use that because gluonts
integrates Pytorch. So to use deep_ar() %>% set_engine("torch")
then we need to have the Pytorch dependencies.
Installed in two stages:
All examples were performed 'accuracy_tbl %>% group_by(id) %>% slice_min(rmse) A tibble: 7 x 10
.model_id .model_desc .type id mae mape mase smape rmse rsq
Interesting. What version of numpy was installed?
Not understood. Version of what?
Versions of all installed packages '(r-gluonts) C:\Users\User>conda list packages in environment at C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts:
Name Version Build Channel async-timeout 3.0.1 pypi_0 pypi attrs 21.2.0 pypi_0 pypi cachetools 4.2.2 pypi_0 pypi certifi 2021.5.30 py37haa95532_0 chardet 3.0.4 pypi_0 pypi charset-normalizer 2.0.3 pypi_0 pypi colorama 0.4.4 pypi_0 pypi convertdate 2.3.2 pypi_0 pypi cycler 0.10.0 pypi_0 pypi gluonts 0.8.0 pypi_0 pypi google-auth 1.33.1 pypi_0 pypi hijri-converter 2.1.3 pypi_0 pypi holidays 0.11.2 pypi_0 pypi idna 2.6 pypi_0 pypi importlib-metadata 4.6.1 pypi_0 pypi kiwisolver 1.3.1 pypi_0 pypi korean-lunar-calendar 0.2.1 pypi_0 pypi matplotlib 3.4.2 pypi_0 pypi multidict 5.1.0 pypi_0 pypi mxnet 1.7.0.post2 pypi_0 pypi numpy 1.21.1 pypi_0 pypi oauthlib 3.1.1 pypi_0 pypi packaging 21.0 pypi_0 pypi pandas 1.0.5 pypi_0 pypi pathlib 1.0.1 pypi_0 pypi pillow 8.3.1 pypi_0 pypi pip 21.1.3 pyhd8ed1ab_0 conda-forge protobuf 3.17.3 pypi_0 pypi pyasn1 0.4.8 pypi_0 pypi pyasn1-modules 0.2.8 pypi_0 pypi pydantic 1.8.2 pypi_0 pypi pymeeus 0.5.11 pypi_0 pypi pyparsing 2.4.7 pypi_0 pypi python 3.7.1 h9460c21_1003 conda-forge python-dateutil 2.8.2 pypi_0 pypi python-graphviz 0.8.4 pypi_0 pypi python_abi 3.7 2_cp37m conda-forge pytz 2021.1 pypi_0 pypi requests 2.26.0 pypi_0 pypi requests-oauthlib 1.3.0 pypi_0 pypi rsa 4.7.2 pypi_0 pypi setuptools 49.6.0 py37h03978a9_3 conda-forge six 1.16.0 pypi_0 pypi tensorboard-plugin-wit 1.8.0 pypi_0 pypi toolz 0.11.1 pypi_0 pypi torch 1.9.0 pypi_0 pypi tqdm 4.61.2 pypi_0 pypi typing-extensions 3.10.0.0 pypi_0 pypi ucrt 10.0.20348.0 h57928b3_0 conda-forge ujson 4.0.2 pypi_0 pypi urllib3 1.22 pypi_0 pypi vc 14.2 hb210afc_5 conda-forge vs2015_runtime 14.29.30037 h902a5da_5 conda-forge werkzeug 2.0.1 pypi_0 pypi wheel 0.36.2 pyhd3deb0d_0 conda-forge wincertstore 0.2 py37h03978a9_1006 conda-forge yarl 1.6.3 pypi_0 pypi zipp 3.5.0 pypi_0 pypi'
@VladPerervenko Sorry about that... I was responding from my phone. This was perfect though! I wanted to check out your numpy version and how it was installed.
I have tested this latest fix on my local Windows OS. I ran into similar issues as you. I have found a solution, which is incorporated in the fix.
I have now updated the install_gluonts()
function to split the installation into stages:
What now happens is you'll get a PIP error message indicating the dependency resolver doesn't take into account all the packages that are installed.
But, this is OK. The full functionality will work.
Simply run:
install_gluonts(fresh_install = TRUE, include_pytorch = TRUE)
Once installed, then restart your R-Session. Load modeltime.gluonts and you are good to go.
Everything was installed, all examples were executed. The question can be closed?
That's great to hear. I will close.
install_gluonts()
to install GluonTS Python Dependencies into a conda environment named r-gluonts.modeltime.gluonts::install_gluonts(fresh_install = TRUE, include_pytorch = TRUE) i Removing conda env
r-gluonts` to setup for fresh install...Package Plan
environment location: C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts
The following packages will be REMOVED:
certifi-2021.5.30-py37haa95532_0 pip-21.1.3-pyhd8ed1ab_0 python-3.7.1-h9460c21_1003 python_abi-3.7-2_cp37m setuptools-49.6.0-py37h03978a9_3 ucrt-10.0.20348.0-h57928b3_0 vc-14.2-hb210afc_5 vs2015_runtime-14.29.30037-h902a5da_5 wheel-0.36.2-pyhd3deb0d_0 wincertstore-0.2-py37h03978a9_1006
Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done
Remove all packages in environment C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts:
i Installing gluonts python dependencies...
Collecting package metadata (current_repodata.json): ...working... done Solving environment: ...working... failed with repodata from current_repodata.json, will retry with next repodata source. Collecting package metadata (repodata.json): ...working... done Solving environment: ...working... done
Package Plan
environment location: C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts
added / updated specs:
The following NEW packages will be INSTALLED:
certifi conda-forge/win-64::certifi-2021.5.30-py37h03978a9_0 pip conda-forge/noarch::pip-21.1.3-pyhd8ed1ab_0 python conda-forge/win-64::python-3.7.1-h9460c21_1003 python_abi conda-forge/win-64::python_abi-3.7-2_cp37m setuptools conda-forge/win-64::setuptools-49.6.0-py37h03978a9_3 ucrt conda-forge/win-64::ucrt-10.0.20348.0-h57928b3_0 vc conda-forge/win-64::vc-14.2-hb210afc_5 vs2015_runtime conda-forge/win-64::vs2015_runtime-14.29.30037-h902a5da_5 wheel conda-forge/noarch::wheel-0.36.2-pyhd3deb0d_0 wincertstore conda-forge/win-64::wincertstore-0.2-py37h03978a9_1006
Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done #
Collecting package metadata (current_repodata.json): ...working... done Solving environment: ...working... done
Package Plan
environment location: C:\Users\User\AppData\Local\R-MINI~1\envs\r-gluonts
added / updated specs:
The following packages will be SUPERSEDED by a higher-priority channel:
certifi conda-forge::certifi-2021.5.30-py37h0~ --> pkgs/main::certifi-2021.5.30-py37haa95532_0
Preparing transaction: ...working... done Verifying transaction: ...working... done Executing transaction: ...working... done Collecting mxnet>=1.7 Using cached mxnet-1.7.0.post2-py2.py3-none-win_amd64.whl (33.1 MB) Collecting gluonts==0.8.0 Using cached gluonts-0.8.0-py3-none-any.whl (2.1 MB) Collecting numpy==1.17.2 Using cached numpy-1.17.2-cp37-cp37m-win_amd64.whl (12.8 MB) Collecting pandas==1.0.5 Using cached pandas-1.0.5-cp37-cp37m-win_amd64.whl (8.7 MB) Collecting pathlib==1.0.1 Using cached pathlib-1.0.1.tar.gz (49 kB) Collecting ujson Using cached ujson-4.0.2-cp37-cp37m-win_amd64.whl (43 kB) Collecting torch==1.9.0 Downloading torch-1.9.0-cp37-cp37m-win_amd64.whl (222.0 MB) Collecting pytorch-lightning==1.3.8 Downloading pytorch_lightning-1.3.8-py3-none-any.whl (813 kB) Collecting pydantic~=1.1 Using cached pydantic-1.8.2-cp37-cp37m-win_amd64.whl (1.9 MB) Collecting holidays>=0.9 Using cached holidays-0.11.2-py3-none-any.whl (142 kB) Collecting tqdm~=4.23 Using cached tqdm-4.61.2-py2.py3-none-any.whl (76 kB) Collecting toolz~=0.10 Using cached toolz-0.11.1-py3-none-any.whl (55 kB) Collecting matplotlib~=3.0 Using cached matplotlib-3.4.2-cp37-cp37m-win_amd64.whl (7.1 MB) Collecting typing-extensions~=3.10.0.0 Using cached typing_extensions-3.10.0.0-py3-none-any.whl (26 kB) Collecting python-dateutil>=2.6.1 Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB) Collecting pytz>=2017.2 Using cached pytz-2021.1-py2.py3-none-any.whl (510 kB) Collecting torchmetrics>=0.2.0 Downloading torchmetrics-0.4.1-py3-none-any.whl (234 kB) Collecting tensorboard!=2.5.0,>=2.2.0 Downloading tensorboard-2.4.1-py3-none-any.whl (10.6 MB) Collecting PyYAML<=5.4.1,>=5.1 Downloading PyYAML-5.4.1-cp37-cp37m-win_amd64.whl (210 kB) Collecting pillow!=8.3.0 Using cached Pillow-8.3.1-1-cp37-cp37m-win_amd64.whl (3.2 MB) Collecting pyDeprecate==0.3.0 Downloading pyDeprecate-0.3.0-py3-none-any.whl (10 kB) Collecting future>=0.17.1 Using cached future-0.18.2.tar.gz (829 kB) Collecting fsspec[http]!=2021.06.0,>=2021.05.0 Downloading fsspec-2021.7.0-py3-none-any.whl (118 kB) Collecting packaging>=17.0 Downloading packaging-21.0-py3-none-any.whl (40 kB) Collecting requests<2.19.0,>=2.18.4 Using cached requests-2.18.4-py2.py3-none-any.whl (88 kB) Collecting graphviz<0.9.0,>=0.8.1 Using cached graphviz-0.8.4-py2.py3-none-any.whl (16 kB) Collecting mxnet>=1.7 Using cached mxnet-1.7.0.post1-py2.py3-none-win_amd64.whl (33.0 MB) INFO: pip is looking at multiple versions of pydeprecate to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of pytorch-lightning to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of torch to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of pathlib to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of pandas to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of numpy to determine which version is compatible with other requirements. This could take a while. INFO: pip is looking at multiple versions of to determine which version is compatible with other requirements. This could take a while.
INFO: pip is looking at multiple versions of gluonts to determine which version is compatible with other requirements. This could take a while.
ERROR: Cannot install gluonts==0.8.0, mxnet==1.7.0.post1, mxnet==1.7.0.post2, numpy==1.17.2, pandas==1.0.5 and pytorch-lightning==1.3.8 because these package versions have conflicting dependencies.
The conflict is caused by: The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 pytorch-lightning 1.3.8 depends on numpy>=1.17.2 mxnet 1.7.0.post2 depends on numpy<1.17.0 and >=1.8.2 The user requested numpy==1.17.2 gluonts 0.8.0 depends on numpy~=1.16 pandas 1.0.5 depends on numpy>=1.13.3 pytorch-lightning 1.3.8 depends on numpy>=1.17.2 mxnet 1.7.0.post1 depends on numpy<1.17.0 and >=1.8.2
To fix this you could try to:
ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/user_guide/#fixing-conflicting-dependencies Error: Error installing package(s): "mxnet>=1.7", "gluonts==0.8.0", "numpy==1.17.2", "pandas==1.0.5", "pathlib==1.0.1", "ujson", "torch==1.9.0", "pytorch-lightning==1.3.8" x Installing gluonts python dependencies... ... failed`
-----------------------------------------------------------------
sysname release version
"Windows" "10 x64" "build 19043" R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
-------------------------------------------------------------------
how to fix the installation?