[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1.
LL0_1520_robot_failures_lp5
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1.
LL0_1493_one_hundred_plants_texture
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1.
LL0_1008_analcatdata_reviewer
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype uint8 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_333_monks_problems_1
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_337_spectf
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/model_selection/_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.
% (min_groups, self.n_splits)), Warning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/covariance/shrunkcovariance.py:193: UserWarning: Only one sample available. You may want to reshape your data array
warnings.warn("Only one sample available. "
LL0_40509_Australian
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
Errors:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/multiclass.py", line 97, in unique_labels
raise ValueError("Unknown label type: %s" % repr(ys))
LL0_1466_cardiotocography
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:77: UserWarning: Maximum number of iterations reached
warnings.warn('Maximum number of iterations reached')
Errors:
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/utils/multiclass.py", line 97, in unique_labels
raise ValueError("Unknown label type: %s" % repr(ys))
LL0_1501_semeion
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
LL0_475_analcatdata_germangss
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:77: UserWarning: Maximum number of iterations reached
warnings.warn('Maximum number of iterations reached')
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] metalearn/env/lib/python3.6/site-packages/numpy/core/_methods.py:29: RuntimeWarning: invalid value encountered in reduce
return umr_minimum(a, axis, None, out, keepdims)
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:4291: RuntimeWarning: Invalid value encountered in percentile
interpolation=interpolation)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/model_selection/_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.
% (min_groups, self.n_splits)), Warning)
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/covariance/shrunkcovariance.py:193: UserWarning: Only one sample available. You may want to reshape your data array
warnings.warn("Only one sample available. "
LL0_1531_volcanoes_b1
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_228_breast_cancer_wisconsin_diagnostic
Errors:
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/utils/multiclass.py", line 97, in unique_labels
raise ValueError("Unknown label type: %s" % repr(ys))
LL0_335_monks_problems_3
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1040_sylva_prior
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_238_drivface
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:313: UserWarning: X scores are null at iteration 0
warnings.warn('X scores are null at iteration %s' % k)
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:4291: RuntimeWarning: Invalid value encountered in percentile
interpolation=interpolation)
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:3184: RuntimeWarning: invalid value encountered in true_divide
c /= stddev[None, :]
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:3183: RuntimeWarning: invalid value encountered in true_divide
c /= stddev[:, None]
[x] metalearn/env/lib/python3.6/site-packages/sklearn/model_selection/_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/covariance/shrunkcovariance.py:193: UserWarning: Only one sample available. You may want to reshape your data array
warnings.warn("Only one sample available. "
LL0_1508_user_knowledge
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_40693_xd6
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1041_gina_prior2
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1515_micro_mass
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_478_collins
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_1176_internet_advertisements
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
LL0_1036_sylva_agnostic
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_488_colleges_aaup
Warnings:
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
Errors:
[x] ValueError: cannot reshape array of size 0 into shape (0,newaxis)
LL0_1529_volcanoes_a3
Warnings:
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_1100_popularkids
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:3183: RuntimeWarning: invalid value encountered in true_divide
c /= stddev[:, None]
[x] /metalearn/env/lib/python3.6/site-packages/numpy/core/_methods.py:29: RuntimeWarning: invalid value encountered in reduce
return umr_minimum(a, axis, None, out, keepdims)
[x] /metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:4291: RuntimeWarning: Invalid value encountered in percentile
interpolation=interpolation)
LL0_39_ecoli
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/covariance/shrunkcovariance.py:193: UserWarning: Only one sample available. You may want to reshape your data array
warnings.warn("Only one sample available. "
LL0_953_splice
Warnings:
[x] /metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype uint8 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_186_braziltourism
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/model_selection/_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.
% (min_groups, self.n_splits)), Warning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
[x] metalearn/env/lib/python3.6/site-packages/sklearn/covariance/shrunkcovariance.py:193: UserWarning: Only one sample available. You may want to reshape your data array
warnings.warn("Only one sample available. "
LL0_32_pendigits
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_42_soybean
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:313: UserWarning: X scores are null at iteration 0
warnings.warn('X scores are null at iteration %s' % k)
[x] metalearn/env/lib/python3.6/site-packages/numpy/lib/function_base.py:3183: RuntimeWarning: invalid value encountered in true_divide
c /= stddev[:, None]
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:77: UserWarning: Maximum number of iterations reached
warnings.warn('Maximum number of iterations reached')
Errors:
[x] ValueError: cannot reshape array of size 0 into shape (0,newaxis)
LL0_1_anneal
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_1481_kr_vs_k
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_40706_parity5_plus_5
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1459_artificial_characters
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
LL0_40649_GAMETES_Heterogeneity_20atts_1600_Het_0
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1538_volcanoes_d1
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:442: UserWarning: The priors do not sum to 1. Renormalizing
UserWarning)
LL0_747_servo
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
LL0_1217_click_prediction_small
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/crossdecomposition/pls.py:329: RuntimeWarning: invalid value encountered in true_divide
/ np.dot(y_scores.T, y_scores))
[x] metalearn/env/lib/python3.6/site-packages/sklearn/model_selection/_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=2.
% (min_groups, self.n_splits)), Warning)
Errors:
[x] MemoryError
LL0_329_hayes_roth
Warnings:
[x] metalearn/env/lib/python3.6/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype int64 was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Errors:
Warnings:
Warnings:
Errors:
Warnings:
Warnings:
Warnings:
Errors:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Errors:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Errors:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Errors:
Warnings:
Errors:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings:
Warnings: