Open fokxon opened 1 year ago
Hi, this indicates a mismatch between the sequence lengths, data resolution, and model pooling. If you send the statistics.json file of your dataset and you’re parameters json file of your model, I can help debug.
Thank you for your reply. I can't access the files right now but I think it is the same as what the tutorial generates cause I didn't change anything in it. I can send you mine in a few days if you want.
Hi, I tracked down the bug. Pull the latest from master branch and rerun the notebook from the beginning, including the dataset generation.
Hello, I also encountered this problem, how to debug this problem
Hi, can you share some details about how you're running the script and the error output that you see? I thought I fixed this bug.
Thank U. This is the err_log. Sincerely, Wen
At 2023-03-24 06:11:27, "David Kelley" @.***> wrote:
Hi, can you share some details about how you're running the script and the error output that you see? I thought I fixed this bug.
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***> python basenji_train.py -k -o ./data/1m/train_out/ ./data/1m/params_tutorial.json ./data/1m/
2023-03-25 12:57:32.355071: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-25 12:57:32.571997: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0
.
2023-03-25 12:57:32.575328: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-03-25 12:57:32.575342: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2023-03-25 12:57:33.961203: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2023-03-25 12:57:33.961325: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory
2023-03-25 12:57:33.961344: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2023-03-25 12:57:35.935947: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.936030: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.936081: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.936120: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcufft.so.10'; dlerror: libcufft.so.10: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.991712: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.991776: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory
2023-03-25 12:57:35.991802: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2023-03-25 12:57:35.992460: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
WARNING:tensorflow:From /data/user/liangbw/anaconda3/envs/basenji/lib/python3.8/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089
Model: "model_1"
sequence (InputLayer) [(None, 1048576, 4) 0 []
]
stochastic_reverse_complement ((None, 1048576, 4) 0 ['sequence[0][0]']
(StochasticReverseComplement) , ())
stochastic_shift (StochasticSh (None, 1048576, 4) 0 ['stochastic_reverse_complement[0 ift) ][0]']
re_lu (ReLU) (None, 1048576, 4) 0 ['stochastic_shift[0][0]']
conv1d (Conv1D) (None, 1048576, 96) 4224 ['re_lu[0][0]']
batch_normalization (BatchNorm (None, 1048576, 96) 384 ['conv1d[0][0]']
alization)
max_pooling1d (MaxPooling1D) (None, 524288, 96) 0 ['batch_normalization[0][0]']
re_lu_1 (ReLU) (None, 524288, 96) 0 ['max_pooling1d[0][0]']
conv1d_1 (Conv1D) (None, 524288, 96) 46080 ['re_lu_1[0][0]']
batch_normalization_1 (BatchNo (None, 524288, 96) 384 ['conv1d_1[0][0]']
rmalization)
max_pooling1d_1 (MaxPooling1D) (None, 262144, 96) 0 ['batch_normalization_1[0][0]']
re_lu_2 (ReLU) (None, 262144, 96) 0 ['max_pooling1d_1[0][0]']
conv1d_2 (Conv1D) (None, 262144, 96) 46080 ['re_lu_2[0][0]']
batch_normalization_2 (BatchNo (None, 262144, 96) 384 ['conv1d_2[0][0]']
rmalization)
max_pooling1d_2 (MaxPooling1D) (None, 131072, 96) 0 ['batch_normalization_2[0][0]']
re_lu_3 (ReLU) (None, 131072, 96) 0 ['max_pooling1d_2[0][0]']
conv1d_3 (Conv1D) (None, 131072, 96) 46080 ['re_lu_3[0][0]']
batch_normalization_3 (BatchNo (None, 131072, 96) 384 ['conv1d_3[0][0]']
rmalization)
max_pooling1d_3 (MaxPooling1D) (None, 65536, 96) 0 ['batch_normalization_3[0][0]']
re_lu_4 (ReLU) (None, 65536, 96) 0 ['max_pooling1d_3[0][0]']
conv1d_4 (Conv1D) (None, 65536, 96) 46080 ['re_lu_4[0][0]']
batch_normalization_4 (BatchNo (None, 65536, 96) 384 ['conv1d_4[0][0]']
rmalization)
max_pooling1d_4 (MaxPooling1D) (None, 32768, 96) 0 ['batch_normalization_4[0][0]']
re_lu_5 (ReLU) (None, 32768, 96) 0 ['max_pooling1d_4[0][0]']
conv1d_5 (Conv1D) (None, 32768, 96) 46080 ['re_lu_5[0][0]']
batch_normalization_5 (BatchNo (None, 32768, 96) 384 ['conv1d_5[0][0]']
rmalization)
max_pooling1d_5 (MaxPooling1D) (None, 16384, 96) 0 ['batch_normalization_5[0][0]']
re_lu_6 (ReLU) (None, 16384, 96) 0 ['max_pooling1d_5[0][0]']
conv1d_6 (Conv1D) (None, 16384, 96) 46080 ['re_lu_6[0][0]']
batch_normalization_6 (BatchNo (None, 16384, 96) 384 ['conv1d_6[0][0]']
rmalization)
max_pooling1d_6 (MaxPooling1D) (None, 8192, 96) 0 ['batch_normalization_6[0][0]']
re_lu_7 (ReLU) (None, 8192, 96) 0 ['max_pooling1d_6[0][0]']
conv1d_7 (Conv1D) (None, 8192, 96) 46080 ['re_lu_7[0][0]']
batch_normalization_7 (BatchNo (None, 8192, 96) 384 ['conv1d_7[0][0]']
rmalization)
max_pooling1d_7 (MaxPooling1D) (None, 4096, 96) 0 ['batch_normalization_7[0][0]']
re_lu_8 (ReLU) (None, 4096, 96) 0 ['max_pooling1d_7[0][0]']
conv1d_8 (Conv1D) (None, 4096, 96) 46080 ['re_lu_8[0][0]']
batch_normalization_8 (BatchNo (None, 4096, 96) 384 ['conv1d_8[0][0]']
rmalization)
max_pooling1d_8 (MaxPooling1D) (None, 2048, 96) 0 ['batch_normalization_8[0][0]']
re_lu_9 (ReLU) (None, 2048, 96) 0 ['max_pooling1d_8[0][0]']
conv1d_9 (Conv1D) (None, 2048, 96) 46080 ['re_lu_9[0][0]']
batch_normalization_9 (BatchNo (None, 2048, 96) 384 ['conv1d_9[0][0]']
rmalization)
max_pooling1d_9 (MaxPooling1D) (None, 1024, 96) 0 ['batch_normalization_9[0][0]']
re_lu_10 (ReLU) (None, 1024, 96) 0 ['max_pooling1d_9[0][0]']
conv1d_10 (Conv1D) (None, 1024, 96) 46080 ['re_lu_10[0][0]']
batch_normalization_10 (BatchN (None, 1024, 96) 384 ['conv1d_10[0][0]']
ormalization)
max_pooling1d_10 (MaxPooling1D (None, 512, 96) 0 ['batch_normalization_10[0][0]'] )
re_lu_11 (ReLU) (None, 512, 96) 0 ['max_pooling1d_10[0][0]']
conv1d_11 (Conv1D) (None, 512, 48) 13824 ['re_lu_11[0][0]']
batch_normalization_11 (BatchN (None, 512, 48) 192 ['conv1d_11[0][0]']
ormalization)
re_lu_12 (ReLU) (None, 512, 48) 0 ['batch_normalization_11[0][0]']
conv1d_12 (Conv1D) (None, 512, 96) 4608 ['re_lu_12[0][0]']
batch_normalization_12 (BatchN (None, 512, 96) 384 ['conv1d_12[0][0]']
ormalization)
dropout (Dropout) (None, 512, 96) 0 ['batch_normalization_12[0][0]']
add (Add) (None, 512, 96) 0 ['max_pooling1d_10[0][0]',
'dropout[0][0]']
re_lu_13 (ReLU) (None, 512, 96) 0 ['add[0][0]']
conv1d_13 (Conv1D) (None, 512, 48) 13824 ['re_lu_13[0][0]']
batch_normalization_13 (BatchN (None, 512, 48) 192 ['conv1d_13[0][0]']
ormalization)
re_lu_14 (ReLU) (None, 512, 48) 0 ['batch_normalization_13[0][0]']
conv1d_14 (Conv1D) (None, 512, 96) 4608 ['re_lu_14[0][0]']
batch_normalization_14 (BatchN (None, 512, 96) 384 ['conv1d_14[0][0]']
ormalization)
dropout_1 (Dropout) (None, 512, 96) 0 ['batch_normalization_14[0][0]']
add_1 (Add) (None, 512, 96) 0 ['add[0][0]',
'dropout_1[0][0]']
re_lu_15 (ReLU) (None, 512, 96) 0 ['add_1[0][0]']
conv1d_15 (Conv1D) (None, 512, 48) 13824 ['re_lu_15[0][0]']
batch_normalization_15 (BatchN (None, 512, 48) 192 ['conv1d_15[0][0]']
ormalization)
re_lu_16 (ReLU) (None, 512, 48) 0 ['batch_normalization_15[0][0]']
conv1d_16 (Conv1D) (None, 512, 96) 4608 ['re_lu_16[0][0]']
batch_normalization_16 (BatchN (None, 512, 96) 384 ['conv1d_16[0][0]']
ormalization)
dropout_2 (Dropout) (None, 512, 96) 0 ['batch_normalization_16[0][0]']
add_2 (Add) (None, 512, 96) 0 ['add_1[0][0]',
'dropout_2[0][0]']
re_lu_17 (ReLU) (None, 512, 96) 0 ['add_2[0][0]']
conv1d_17 (Conv1D) (None, 512, 48) 13824 ['re_lu_17[0][0]']
batch_normalization_17 (BatchN (None, 512, 48) 192 ['conv1d_17[0][0]']
ormalization)
re_lu_18 (ReLU) (None, 512, 48) 0 ['batch_normalization_17[0][0]']
conv1d_18 (Conv1D) (None, 512, 96) 4608 ['re_lu_18[0][0]']
batch_normalization_18 (BatchN (None, 512, 96) 384 ['conv1d_18[0][0]']
ormalization)
dropout_3 (Dropout) (None, 512, 96) 0 ['batch_normalization_18[0][0]']
add_3 (Add) (None, 512, 96) 0 ['add_2[0][0]',
'dropout_3[0][0]']
re_lu_19 (ReLU) (None, 512, 96) 0 ['add_3[0][0]']
conv1d_19 (Conv1D) (None, 512, 48) 13824 ['re_lu_19[0][0]']
batch_normalization_19 (BatchN (None, 512, 48) 192 ['conv1d_19[0][0]']
ormalization)
re_lu_20 (ReLU) (None, 512, 48) 0 ['batch_normalization_19[0][0]']
conv1d_20 (Conv1D) (None, 512, 96) 4608 ['re_lu_20[0][0]']
batch_normalization_20 (BatchN (None, 512, 96) 384 ['conv1d_20[0][0]']
ormalization)
dropout_4 (Dropout) (None, 512, 96) 0 ['batch_normalization_20[0][0]']
add_4 (Add) (None, 512, 96) 0 ['add_3[0][0]',
'dropout_4[0][0]']
re_lu_21 (ReLU) (None, 512, 96) 0 ['add_4[0][0]']
conv1d_21 (Conv1D) (None, 512, 48) 13824 ['re_lu_21[0][0]']
batch_normalization_21 (BatchN (None, 512, 48) 192 ['conv1d_21[0][0]']
ormalization)
re_lu_22 (ReLU) (None, 512, 48) 0 ['batch_normalization_21[0][0]']
conv1d_22 (Conv1D) (None, 512, 96) 4608 ['re_lu_22[0][0]']
batch_normalization_22 (BatchN (None, 512, 96) 384 ['conv1d_22[0][0]']
ormalization)
dropout_5 (Dropout) (None, 512, 96) 0 ['batch_normalization_22[0][0]']
add_5 (Add) (None, 512, 96) 0 ['add_4[0][0]',
'dropout_5[0][0]']
re_lu_23 (ReLU) (None, 512, 96) 0 ['add_5[0][0]']
conv1d_23 (Conv1D) (None, 512, 48) 13824 ['re_lu_23[0][0]']
batch_normalization_23 (BatchN (None, 512, 48) 192 ['conv1d_23[0][0]']
ormalization)
re_lu_24 (ReLU) (None, 512, 48) 0 ['batch_normalization_23[0][0]']
conv1d_24 (Conv1D) (None, 512, 96) 4608 ['re_lu_24[0][0]']
batch_normalization_24 (BatchN (None, 512, 96) 384 ['conv1d_24[0][0]']
ormalization)
dropout_6 (Dropout) (None, 512, 96) 0 ['batch_normalization_24[0][0]']
add_6 (Add) (None, 512, 96) 0 ['add_5[0][0]',
'dropout_6[0][0]']
re_lu_25 (ReLU) (None, 512, 96) 0 ['add_6[0][0]']
conv1d_25 (Conv1D) (None, 512, 48) 13824 ['re_lu_25[0][0]']
batch_normalization_25 (BatchN (None, 512, 48) 192 ['conv1d_25[0][0]']
ormalization)
re_lu_26 (ReLU) (None, 512, 48) 0 ['batch_normalization_25[0][0]']
conv1d_26 (Conv1D) (None, 512, 96) 4608 ['re_lu_26[0][0]']
batch_normalization_26 (BatchN (None, 512, 96) 384 ['conv1d_26[0][0]']
ormalization)
dropout_7 (Dropout) (None, 512, 96) 0 ['batch_normalization_26[0][0]']
add_7 (Add) (None, 512, 96) 0 ['add_6[0][0]',
'dropout_7[0][0]']
re_lu_27 (ReLU) (None, 512, 96) 0 ['add_7[0][0]']
conv1d_27 (Conv1D) (None, 512, 64) 30720 ['re_lu_27[0][0]']
batch_normalization_27 (BatchN (None, 512, 64) 256 ['conv1d_27[0][0]']
ormalization)
re_lu_28 (ReLU) (None, 512, 64) 0 ['batch_normalization_27[0][0]']
one_to_two (OneToTwo) (None, 512, 512, 64 0 ['re_lu_28[0][0]']
)
concat_dist2d (ConcatDist2D) (None, 512, 512, 65 0 ['one_to_two[0][0]']
)
re_lu_29 (ReLU) (None, 512, 512, 65 0 ['concat_dist2d[0][0]']
)
conv2d (Conv2D) (None, 512, 512, 48 28080 ['re_lu_29[0][0]']
)
batch_normalization_28 (BatchN (None, 512, 512, 48 192 ['conv2d[0][0]']
ormalization) )
symmetrize2d (Symmetrize2D) (None, 512, 512, 48 0 ['batch_normalization_28[0][0]'] )
re_lu_30 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d[0][0]']
)
conv2d_1 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_30[0][0]']
)
batch_normalization_29 (BatchN (None, 512, 512, 24 96 ['conv2d_1[0][0]']
ormalization) )
re_lu_31 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_29[0][0]'] )
conv2d_2 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_31[0][0]']
)
batch_normalization_30 (BatchN (None, 512, 512, 48 192 ['conv2d_2[0][0]']
ormalization) )
dropout_8 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_30[0][0]'] )
add_8 (Add) (None, 512, 512, 48 0 ['symmetrize2d[0][0]',
) 'dropout_8[0][0]']
symmetrize2d_1 (Symmetrize2D) (None, 512, 512, 48 0 ['add_8[0][0]']
)
re_lu_32 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d_1[0][0]']
)
conv2d_3 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_32[0][0]']
)
batch_normalization_31 (BatchN (None, 512, 512, 24 96 ['conv2d_3[0][0]']
ormalization) )
re_lu_33 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_31[0][0]'] )
conv2d_4 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_33[0][0]']
)
batch_normalization_32 (BatchN (None, 512, 512, 48 192 ['conv2d_4[0][0]']
ormalization) )
dropout_9 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_32[0][0]'] )
add_9 (Add) (None, 512, 512, 48 0 ['symmetrize2d_1[0][0]',
) 'dropout_9[0][0]']
symmetrize2d_2 (Symmetrize2D) (None, 512, 512, 48 0 ['add_9[0][0]']
)
re_lu_34 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d_2[0][0]']
)
conv2d_5 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_34[0][0]']
)
batch_normalization_33 (BatchN (None, 512, 512, 24 96 ['conv2d_5[0][0]']
ormalization) )
re_lu_35 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_33[0][0]'] )
conv2d_6 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_35[0][0]']
)
batch_normalization_34 (BatchN (None, 512, 512, 48 192 ['conv2d_6[0][0]']
ormalization) )
dropout_10 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_34[0][0]'] )
add_10 (Add) (None, 512, 512, 48 0 ['symmetrize2d_2[0][0]',
) 'dropout_10[0][0]']
symmetrize2d_3 (Symmetrize2D) (None, 512, 512, 48 0 ['add_10[0][0]']
)
re_lu_36 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d_3[0][0]']
)
conv2d_7 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_36[0][0]']
)
batch_normalization_35 (BatchN (None, 512, 512, 24 96 ['conv2d_7[0][0]']
ormalization) )
re_lu_37 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_35[0][0]'] )
conv2d_8 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_37[0][0]']
)
batch_normalization_36 (BatchN (None, 512, 512, 48 192 ['conv2d_8[0][0]']
ormalization) )
dropout_11 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_36[0][0]'] )
add_11 (Add) (None, 512, 512, 48 0 ['symmetrize2d_3[0][0]',
) 'dropout_11[0][0]']
symmetrize2d_4 (Symmetrize2D) (None, 512, 512, 48 0 ['add_11[0][0]']
)
re_lu_38 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d_4[0][0]']
)
conv2d_9 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_38[0][0]']
)
batch_normalization_37 (BatchN (None, 512, 512, 24 96 ['conv2d_9[0][0]']
ormalization) )
re_lu_39 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_37[0][0]'] )
conv2d_10 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_39[0][0]']
)
batch_normalization_38 (BatchN (None, 512, 512, 48 192 ['conv2d_10[0][0]']
ormalization) )
dropout_12 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_38[0][0]'] )
add_12 (Add) (None, 512, 512, 48 0 ['symmetrize2d_4[0][0]',
) 'dropout_12[0][0]']
symmetrize2d_5 (Symmetrize2D) (None, 512, 512, 48 0 ['add_12[0][0]']
)
re_lu_40 (ReLU) (None, 512, 512, 48 0 ['symmetrize2d_5[0][0]']
)
conv2d_11 (Conv2D) (None, 512, 512, 24 10368 ['re_lu_40[0][0]']
)
batch_normalization_39 (BatchN (None, 512, 512, 24 96 ['conv2d_11[0][0]']
ormalization) )
re_lu_41 (ReLU) (None, 512, 512, 24 0 ['batch_normalization_39[0][0]'] )
conv2d_12 (Conv2D) (None, 512, 512, 48 1152 ['re_lu_41[0][0]']
)
batch_normalization_40 (BatchN (None, 512, 512, 48 192 ['conv2d_12[0][0]']
ormalization) )
dropout_13 (Dropout) (None, 512, 512, 48 0 ['batch_normalization_40[0][0]'] )
add_13 (Add) (None, 512, 512, 48 0 ['symmetrize2d_5[0][0]',
) 'dropout_13[0][0]']
symmetrize2d_6 (Symmetrize2D) (None, 512, 512, 48 0 ['add_13[0][0]']
)
cropping2d (Cropping2D) (None, 448, 448, 48 0 ['symmetrize2d_6[0][0]']
)
upper_tri (UpperTri) (None, 99681, 48) 0 ['cropping2d[0][0]']
dense (Dense) (None, 99681, 2) 98 ['upper_tri[0][0]']
switch_reverse_triu (SwitchRev (None, 99681, 2) 0 ['dense[0][0]',
erseTriu) 'stochastic_reverse_complement[0
][1]']
================================================================================================== Total params: 751,506 Trainable params: 746,002 Non-trainable params: 5,504
None
model_strides [2048]
target_lengths [99681]
target_crops [-49585]
<basenji.seqnn.SeqNN object at 0x7f4c3e99bd90>
Epoch 1/10000
Traceback (most recent call last):
File "basenji_train.py", line 183, in
Input to reshape is a tensor with 498405 values, but the requested shape has 199362 [[{{node Reshape}}]] [[IteratorGetNext]] [Op:__inference_train_function_22364]
I can't reproduce the error. Can you make sure you've pulled the latest code from master and cleared out all of the data so that you're starting from scratch?
Dear Prof. David Kelley, I am sorry but when I try it again using the new code from the github, I am also get this error. I'm unfamiliar with tensorflow, but I feel like it should be a network input dimension error, and I wonder if there are updates to the data used, etc. Thanks!
Yours Wen. L.
At 2023-03-26 07:28:20, "David Kelley" @.***> wrote:
I can't reproduce the error. Can you make sure you've pulled the latest code from master and cleared out all of the data so that you're starting from scratch?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>
Hmm that's puzzling. What version of Tensorflow are you using?
Hi, I'm trying to train a new akita model. But when I followed the tutorial with exactly the same parameters, I got the following error when running akita_train.py :
I built the environment with conda and prespecified.yml on ubuntu 20.04, cuda 11.4, cudnn 8.4.0 How can I deal with it? Thank you