Closed ryukinix closed 6 months ago
Decision Tree Feature Importance: | Logistic Regression Feature Importance: | |||
---|---|---|---|---|
SEVERITY | 26% | COUGHING | 29% | |
OTHER_SYMPTOMS | 8% | CHEST_PAIN | 12% | |
GENDER_FEMALE | 7% | FATIGUE | 6% | |
CHEST_PAIN | 7% | RESPIRATORY_SYMPTOMNS | 6% | |
SMOKING | 6% | SNORING | 5% | |
RESPIRATORY_SYMPTOMNS | 6% | SMOKING | 5% | |
SWALLOWING_DIFFICULTY | 5% | SWALLOWING_DIFFICULTY | 4% | |
COUGHING | 5% | SEVERITY | 3% | |
COLD_SYMPTOMNS | 5% | OTHER_SYMPTOMS | 2% | |
GENDER_MALE | 4% | GENDER_FEMALE | 1% | |
AGE_25_59 | 3% | GENDER_MALE | 1% | |
SNORING | 3% | COLD_SYMPTOMNS | -14% | |
AGE60 | 3% | SHORTNESS_OF_BREATH | -21% | |
AGE_0_9 | 3% | AGE_25_59 | -44% | |
AGE_20_24 | 2% | AGE60 | -45% | |
AGE_10_19 | 2% | AGE_0_9 | -46% | |
FATIGUE | 2% | AGE_20_24 | -48% | |
SHORTNESS_OF_BREATH | 2% | AGE_10_19 | -48% |
Random Forest Test Accuracy: 0.9386218603627676 Random Forest Test ROC AUC Score: 0.5148739674606172
Confusion Matrix - Random Forest: [[59595 60] [ 3845 122]]
E o F1 score da classe target (1), @helen0l ? Com exceção da matriz de confusão, essas métricas são irrelevantes para esse problema com classes extremamente desbalanceadas.
Random Forest Model Evaluation Metrics: Test Accuracy: 0.9386218603627676 ROC AUC Score: 0.5148739674606172 F1 Score: 0.058809351651000236 Confusion Matrix:
[[59595 60]
[ 3845 122]]
Logistic Regression Model Evaluation Metrics: Test Accuracy: 0.9382603501933293 ROC AUC Score: 0.5062097946310351 F1 Score: 0.024826216484607744 Confusion Matrix:
[[59644 11]
[ 3917 50]]
Obrigado por refazer as métricas! @helen0l
Usar decision tree ou regressão logística, extrair as métricas e feature e importance