Closed leungjch closed 3 years ago
Hi! @leungjch thanks for running the reproduction! I noticed the MRR@10=0.345 seems to be a bit lower than expected (should be 0.35+, typically 0.354-ish). I'll check the score on my end and get back to u in a couple of days.
At the same time, could u share the version of numpy
, tensorflow
, and transformers
? Thanks!
@crystina-z Here are the versions of numpy
, tensorflow
, and transformers
in the venv.
(capreolus-env) [j89leung@cedar1 capreolus]$ pip list | grep -E "tensorflow|numpy|transformers"
numpy 1.21.2
tensorflow 2.5.0+computecanada
tensorflow-addons 0.13.0+computecanada
tensorflow-datasets 4.4.0
tensorflow-estimator 2.5.0+computecanada
tensorflow-hub 0.12.0+computecanada
tensorflow-metadata 1.2.0
tensorflow-model-optimization 0.6.0
tensorflow-ranking 0.4.2
tensorflow-serving-api 2.6.0
transformers 4.6.0
Here was also the sample_slurm_script.sh
that I ran. I believe I only modified the file to replace the account flag #SBATCH --account=$SLURM_ACCOUNT
#!/bin/bash
#SBATCH --job-name=msmarcopsg
#SBATCH --nodes=1
#SBATCH --gres=gpu:v100l:4
#SBATCH --ntasks-per-node=1
#SBATCH --mem=120GB
#SBATCH --time=72:00:00
#SBATCH --account=$SLURM_ACCOUNT
#SBATCH --cpus-per-task=16
#SBATCH -o ./msmarco-psg-output.log
# Modify the following lines according to your setup process
module load arch/avx512 StdEnv/2018.3 java/11 python/3.7 scipy-stack
ENVDIR=$HOME/venv/capreolus-env
source $ENVDIR/bin/activate
niters=10
batch_size=16
validatefreq=$niters # to ensure the validation is run only at the end of training
decayiters=$niters # either same with $itersize or 0
threshold=1000 # the top-k documents to rerank
python -m capreolus.run rerank.train with \
file=docs/reproduction/config_msmarco.txt \
threshold=$threshold \
reranker.trainer.niters=$niters \
reranker.trainer.batch=$batch_size \
reranker.trainer.decayiters=$decayiters \
reranker.trainer.validatefreq=$validatefreq \
fold=s1
Let me know if there's any other info you need!
moved to here
Reproduced on Compute Canada with 4x Tesla V100s, 4 CPUs, and 120GB RAM.
Results:
Full training and validation logs: msmarco-psg-output.log