Open carloscn opened 1 year ago
int32_t find_k_distant_indices(int32_t *nums, size_t nums_size, int32_t key, int32_t k, size_t *return_size)
{
int32_t ret = 0;
int32_t *buffer = NULL;
UTILS_CHECK_PTR(nums);
UTILS_CHECK_PTR(return_size);
UTILS_CHECK_LEN(nums_size);
buffer = (int32_t *)calloc(sizeof(int32_t), nums_size);
UTILS_CHECK_PTR(buffer);
int32_t buffer_sz = 0;
for (size_t i = 0; i < nums_size; i ++) {
if (nums[i] == key) {
buffer[buffer_sz] = i;
buffer_sz ++;
}
}
int32_t m = 0;
for (int32_t i = 0; i < nums_size; i ++) {
for (int32_t j = 0; j < buffer_sz; j ++) {
if (utils_int32_abs(i - buffer[j]) <= k) {
nums[m ++] = i;
break;
}
}
}
*return_size = (size_t) m;
finish:
UTILS_SAFE_FREE(buffer);
return ret;
}
Description
You are given a 0-indexed integer array nums and two integers key and k. A k-distant index is an index i of nums for which there exists at least one index j such that |i - j| <= k and nums[j] == key.
Return a list of all k-distant indices sorted in increasing order.
Example 1:
Input: nums = [3,4,9,1,3,9,5], key = 9, k = 1 Output: [1,2,3,4,5,6] Explanation: Here, nums[2] == key and nums[5] == key.
Example 2:
Input: nums = [2,2,2,2,2], key = 2, k = 2 Output: [0,1,2,3,4] Explanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index. Hence, we return [0,1,2,3,4].
Constraints:
1 <= nums.length <= 1000 1 <= nums[i] <= 1000 key is an integer from the array nums. 1 <= k <= nums.length