ceccocats / tkDNN

Deep neural network library and toolkit to do high performace inference on NVIDIA jetson platforms
GNU General Public License v2.0
720 stars 209 forks source link

outputs size mismatch for yolov4-tiny runtime? #216

Closed Seioch closed 3 years ago

Seioch commented 3 years ago

I recently trained a yolov4-tiny model, exported the weights using the darknet utility, and prepared to convert the model to TensorRT, but I keep getting this error:

image

Any ideas?

CFG:

` [net] batch=128 subdivisions=32 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1

learning_rate=0.00261 burn_in=1000 max_batches = 6000 policy=steps steps=4000,5000 scales=.1,.1

[convolutional] batch_normalize=1 filters=32 size=3 stride=2 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky

[route] layers=-1 groups=2 group_id=1

[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky

[route] layers = -1,-2

[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky

[route] layers = -6,-1

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky

[route] layers=-1 groups=2 group_id=1

[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky

[route] layers = -1,-2

[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky

[route] layers = -6,-1

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky

[route] layers=-1 groups=2 group_id=1

[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky

[route] layers = -1,-2

[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky

[route] layers = -6,-1

[maxpool] size=2 stride=2

[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky

##################################

[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky

[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky

[convolutional] size=1 stride=1 pad=1 filters=129 activation=linear

[yolo] mask = 3,4,5 anchors=11, 19, 21, 16, 17, 24, 54, 18, 100, 10, 25, 47, 79, 25, 185, 37, 146,159 classes=38 num=9 jitter=.3 scale_x_y = 1.05 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou ignore_thresh = .7 truth_thresh = 1 random=0 resize=1.5 nms_kind=greedynms beta_nms=0.6

[route] layers = -4

[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky

[upsample] stride=2

[route] layers = -1, 23

[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky

[convolutional] size=1 stride=1 pad=1 filters=129 activation=linear

[yolo] mask = 0,1,2 anchors=11, 19, 21, 16, 17, 24, 54, 18, 100, 10, 25, 47, 79, 25, 185, 37, 146,159 classes=38 num=9 jitter=.3 scale_x_y = 1.05 cls_normalizer=1.0 iou_normalizer=0.07 iou_loss=ciou ignore_thresh = .7 truth_thresh = 1 random=0 resize=1.5 nms_kind=greedynms beta_nms=0.6`

Seioch commented 3 years ago

Looking at it a bit closer, there are only two output bins for yolov4-tiny, but for some reason tk::dnn::darknetParser returns a tk::dnn::Network with 3 outputs. No idea why this is happening.

Seioch commented 3 years ago

Figured it out. My makefile was not compiling the right version of my code.