Open SyGoing opened 5 years ago
It seems like your GPU have limited memory. You can adjust the batch_size of the training configuration file.
pedestrian_detection_ssdlite/train/ssdlite_mobilenet_v2_coco.config
train_config: {
batch_size: 24
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt"
fine_tune_checkpoint_type: "detection"
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
The default value of the batch size is 24, if you are using the GPU with lower memory, you may adust the batch_size to 5 or so.
Thanks.
cuda out of memory: the log is like this 2019-05-09 15:24:17.105701: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 6.25G (6712326144 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY 2019-05-09 15:24:17.534339: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 5.63G (6041093120 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY 2019-05-09 15:24:17.942804: E T:\src\github\tensorflow\tensorflow\stream_executor\cuda\cuda_driver.cc:936] failed to allocate 5.06G (5436983808 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY