chanyn / HKRM

Hybrid Knowledge Routed Module for Large-scale Object Detection (NerIPS2018)
105 stars 19 forks source link

这代码是不是不支持pascal voc和coco数据集的训练啊 #11

Closed summerrr closed 5 years ago

summerrr commented 5 years ago

if args.dataset == "vg": args.imdb_name = "vg_train" args.imdbval_name = "vg_val" args.set_cfgs = ['ANCHOR_SCALES', '[2, 4, 8, 16, 32]', 'MAX_NUM_GT_BOXES', '50'] cls_r_prob = pickle.load(open('data/graph/vg_graph_r.pkl', 'rb')) cls_r_prob = np.float32(cls_r_prob) cls_a_prob = pickle.load(open('data/graph/vg_graph_a.pkl', 'rb')) cls_a_prob = np.float32(cls_a_prob) elif args.dataset == "ade": args.imdb_name = "ade_train_5" args.imdbval_name = "ade_val_5" args.set_cfgs = ['ANCHOR_SCALES', '[2, 4, 8, 16, 32]', 'MAX_NUM_GT_BOXES', '50'] cls_r_prob = pickle.load(open('data/graph/ade_graph_r.pkl', 'rb')) cls_r_prob = np.float32(cls_r_prob) cls_a_prob = pickle.load(open('data/graph/ade_graph_a.pkl', 'rb')) cls_a_prob = np.float32(cls_a_prob) elif args.dataset == "vgbig": args.imdb_name = "vg_train_big" args.imdbval_name = "vg_val_big" args.set_cfgs = ['ANCHOR_SCALES', '[2, 4, 8, 16, 32]', 'MAX_NUM_GT_BOXES', '50'] cls_r_prob = pickle.load(open('data/graph/vg_big_graph_r.pkl', 'rb')) cls_r_prob = np.float32(cls_r_prob) cls_a_prob = pickle.load(open('data/graph/vg_big_graph_a.pkl', 'rb')) cls_a_prob = np.float32(cls_a_prob)

看这里并没有写上coco和pascal voc的数据集

chanyn commented 5 years ago

You can edit files of training and testing for COCO and VOC following VG and ADE, we have provided corresponding gt graph of these two datasets. Same settings are used for all datasets in our paper.