Open imClumsyPanda opened 5 months ago
“max_token 不生效的问题”已修复
多模态对话和rag会在0.3.0发布吗
多模态对话和rag会在0.3.0发布吗
会。目前预期是一个版本修复bug,一个版本新增功能。
0.3.0会支持并发吗?
在ollama框架中启动langchain0.3版本进行知识库初始化还是报错chatchat-kb -r
(langchain) D:\other\Langchain-Chatchat-master>chatchat-kb -r
recreating all vector stores
C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_api\module_import.py:87: LangChainDeprecationWarning: Importing GuardrailsOutputParser from langchain.output_parsers is deprecated. Please replace the import with the following:
from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
warnings.warn(
2024-07-03 10:22:16,321 - utils.py[line:260] - ERROR: failed to create Embeddings for model: bge-large-zh-v1.5.
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\utils.py", line 258, in get_Embeddings
return LocalAIEmbeddings(params)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\pydantic\v1\main.py", line 341, in init
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for LocalAIEmbeddings
root
Did not find openai_api_key, please add an environment variable OPENAI_API_KEY
which contains it, or pass openai_api_key
as a named parameter. (type=value_error)
2024-07-03 10:22:16,322 - faiss_cache.py[line:140] - ERROR: 'NoneType' object has no attribute 'embed_documents'
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 126, in load_vector_store
vector_store = self.new_vector_store(
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 63, in new_vector_store
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_core\vectorstores.py", line 550, in from_documents
return cls.from_texts(texts, embedding, metadatas=metadatas, kwargs)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_community\vectorstores\faiss.py", line 930, in from_texts
embeddings = embedding.embed_documents(texts)
AttributeError: 'NoneType' object has no attribute 'embed_documents'
2024-07-03 10:22:16,323 - init_database.py[line:150] - ERROR: 向量库 samples 加载失败。
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 126, in load_vector_store
vector_store = self.new_vector_store(
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 63, in new_vector_store
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_core\vectorstores.py", line 550, in from_documents
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_community\vectorstores\faiss.py", line 930, in from_texts
embeddings = embedding.embed_documents(texts)
AttributeError: 'NoneType' object has no attribute 'embed_documents'
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\init_database.py", line 129, in main folder2db( File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\migrate.py", line 152, in folder2db kb.create_kb() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\base.py", line 102, in create_kb self.do_create_kb() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\faiss_kb_service.py", line 57, in do_create_kb self.load_vector_store() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\faiss_kb_service.py", line 32, in load_vector_store return kb_faiss_pool.load_vector_store( File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 141, in load_vector_store raise RuntimeError(f"向量库 {kb_name} 加载失败。") RuntimeError: 向量库 samples 加载失败。 2024-07-03 10:22:16,325 - init_database.py[line:151] - WARNING: Caught KeyboardInterrupt! Setting stop event...
在ollama框架中启动langchain0.3版本进行知识库初始化还是报错chatchat-kb -r
(langchain) D:\other\Langchain-Chatchat-master>chatchat-kb -r
recreating all vector stores
C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_api\module_import.py:87: LangChainDeprecationWarning: Importing GuardrailsOutputParser from langchain.output_parsers is deprecated. Please replace the import with the following:
from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser
warnings.warn(
2024-07-03 10:22:16,321 - utils.py[line:260] - ERROR: failed to create Embeddings for model: bge-large-zh-v1.5.
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\utils.py", line 258, in get_Embeddings
return LocalAIEmbeddings(params)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\pydantic\v1\main.py", line 341, in init
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for LocalAIEmbeddings
root
Did not find openai_api_key, please add an environment variable OPENAI_API_KEY
which contains it, or pass openai_api_key
as a named parameter. (type=value_error)
2024-07-03 10:22:16,322 - faiss_cache.py[line:140] - ERROR: 'NoneType' object has no attribute 'embed_documents'
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 126, in load_vector_store
vector_store = self.new_vector_store(
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 63, in new_vector_store
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_core\vectorstores.py", line 550, in from_documents
return cls.from_texts(texts, embedding, metadatas=metadatas, kwargs)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_community\vectorstores\faiss.py", line 930, in from_texts
embeddings = embedding.embed_documents(texts)
AttributeError: 'NoneType' object has no attribute 'embed_documents'
2024-07-03 10:22:16,323 - init_database.py[line:150] - ERROR: 向量库 samples 加载失败。
Traceback (most recent call last):
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 126, in load_vector_store
vector_store = self.new_vector_store(
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 63, in new_vector_store
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_core\vectorstores.py", line 550, in from_documents
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
File "C:\Users\30759.conda\envs\langchain\lib\site-packages\langchain_community\vectorstores\faiss.py", line 930, in from_texts
embeddings = embedding.embed_documents(texts)
AttributeError: 'NoneType' object has no attribute 'embed_documents'
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\init_database.py", line 129, in main folder2db( File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\migrate.py", line 152, in folder2db kb.create_kb() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\base.py", line 102, in create_kb self.do_create_kb() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\faiss_kb_service.py", line 57, in do_create_kb self.load_vector_store() File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_service\faiss_kb_service.py", line 32, in load_vector_store return kb_faiss_pool.load_vector_store( File "C:\Users\30759.conda\envs\langchain\lib\site-packages\chatchat\server\knowledge_base\kb_cache\faiss_cache.py", line 141, in load_vector_store raise RuntimeError(f"向量库 {kb_name} 加载失败。") RuntimeError: 向量库 samples 加载失败。 2024-07-03 10:22:16,325 - init_database.py[line:151] - WARNING: Caught KeyboardInterrupt! Setting stop event...
建议前端优化,参考主流的设计,比如“会话”应占据整个左侧边栏;知识库管理、模型配置等集成到左下角或右上角的设置界面。
新增text2promql功能
0.3.0会支持高并发吗
会支持微软的graphrag吗
0.3.0会支持并发吗?0.2.0对并发支持较差
没有GPU,用cpu可以跑吗?
@HaKLMTT 可以,用ollama
@HaKLMTT 可以,用ollama
好的,感谢回复。请问支持国产ARM吗?
0.3版本可以支持配置在线模型吗,现在看虽然可以用oneapi配置在线大模型,但是无法实现在线embedding模型的加载,同时0.3版本也移除了0.2版本的本地化embedding模型功能
会支持信创环境么
ollama什么时间可以支持
@lizhenkai5008 已经支持了
支持self-rag或者agentic RAG吗?比如抗战胜利的那一年罗斯福做了什么?这种多跳推理的RAG问题
支持语音识别吗
另外 微信二维码过期了,帮忙更新以下 @imClumsyPanda
@ClementeGao 二维码已更新
把agent做好,能解决很多问题,对智能化提升最明显。但目前agent问答存在以下问题:
感谢chatchat项目组提供这么好的开源项目,上述agent问题,不知道大佬们有没好的建议
项目近几个月无重大更新,想进一步了解项目最新发展趋势,微信二维码过期了,请帮忙更新, 感谢。 @imClumsyPanda
建议RAG对话过程中,检索答案前加入AI问题补全,来保证上下文的对话中的内容检索不准确的问题
@ClementeGao 二维码已更新
二维码又过期了
@ClementeGao 二维码已更新
二维码又过期了
刚测试是还能用
🐞 改进项
✅ 已发布
🕑 已完成待发布
🏗️ 待开发完成
💡 新增功能
✅ 已发布
🕑 已完成待发布
🏗️ 待开发完成