Open xiki-tempula opened 1 year ago
If one just do a fresh conda install of pymbar 4 on a machine without cuda, one could get
│ ╭───────────────────────────────────────── locals ──────────────────────────────────────────╮ │ │ │ continuation = None │ │ │ │ f_k_nonzero = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., │ │ │ │ │ 0., 0., 0., 0., 0., 0., 0., 0., 0.]) │ │ │ │ method = 'adaptive' │ │ │ │ N_k_nonzeo = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ N_k_nonzero = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ options = {'maxiter': 10000, 'verbose': False} │ │ │ │ tol = 1e-12 │ │ │ │ u_kn_nonzero = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., │ │ │ │ │ │ 1.39702014e+01, 3.21518809e+01, 3.60152730e+01], │ │ │ │ │ [ 5.13781006e-01, 9.31665221e-02, 2.72818891e-01, ..., │ │ │ │ │ │ 1.23757798e+01, 3.05602798e+01, 3.44667669e+01], │ │ │ │ │ [ 1.75389511e+00, 8.02655973e-01, 1.22281803e+00, ..., │ │ │ │ │ │ 1.07887631e+01, 2.89787227e+01, 3.29260834e+01], │ │ │ │ │ ..., │ │ │ │ │ [ 1.02462922e+12, 2.36204171e+06, 4.82963911e+07, ..., │ │ │ │ │ │ -5.68161594e+00, -1.66627325e+00, -1.31547888e+00], │ │ │ │ │ [ 1.02462922e+12, 2.36203915e+06, 4.82963930e+07, ..., │ │ │ │ │ │ -3.06945073e+00, -1.06177938e+00, -8.89514293e-01], │ │ │ │ │ [ 1.02462922e+12, 2.36203706e+06, 4.82963953e+07, ..., │ │ │ │ │ │ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) │ │ │ ╰───────────────────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ /home/ubuntu/mambaforge/envs/asfe/lib/python3.8/site-packages/pymbar/mbar_solvers.py:660 in │ │ precondition_u_kn │ │ │ │ 657 │ x_n such that the current objective function value is zero, which │ │ 658 │ should give maximum precision in the objective function. │ │ 659 │ """ │ │ ❱ 660 │ return jax_precondition_u_kn(u_kn, N_k, f_k) │ │ 661 │ │ 662 │ │ 663 def solve_mbar_once( │ │ │ │ ╭───────────────────────────────────── locals ──────────────────────────────────────╮ │ │ │ f_k = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., │ │ │ │ │ 0., 0., 0., 0., 0., 0., 0., 0., 0.]) │ │ │ │ N_k = array([4584., 4982., 4251., 4232., 2857., 3734., 4141., 4565., 4730., │ │ │ │ │ 4533., 4373., 4278., 5001., 4982., 4870., 4704., 4044., 3583., │ │ │ │ │ 4179., 4490., 4437., 4616., 2181., 4681., 4576., 3712.]) │ │ │ │ u_kn = array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., │ │ │ │ │ │ 1.39702014e+01, 3.21518809e+01, 3.60152730e+01], │ │ │ │ │ [ 5.13781006e-01, 9.31665221e-02, 2.72818891e-01, ..., │ │ │ │ │ │ 1.23757798e+01, 3.05602798e+01, 3.44667669e+01], │ │ │ │ │ [ 1.75389511e+00, 8.02655973e-01, 1.22281803e+00, ..., │ │ │ │ │ │ 1.07887631e+01, 2.89787227e+01, 3.29260834e+01], │ │ │ │ │ ..., │ │ │ │ │ [ 1.02462922e+12, 2.36204171e+06, 4.82963911e+07, ..., │ │ │ │ │ │ -5.68161594e+00, -1.66627325e+00, -1.31547888e+00], │ │ │ │ │ [ 1.02462922e+12, 2.36203915e+06, 4.82963930e+07, ..., │ │ │ │ │ │ -3.06945073e+00, -1.06177938e+00, -8.89514293e-01], │ │ │ │ │ [ 1.02462922e+12, 2.36203706e+06, 4.82963953e+07, ..., │ │ │ │ │ │ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]) │ │ │ ╰───────────────────────────────────────────────────────────────────────────────────╯ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ XlaRuntimeError: FAILED_PRECONDITION: Couldn't get ptxas/nvlink version string: INTERNAL: Couldn't invoke ptxas --version
It might be good to test if ptxas is there when importing pymbar 4 and advise the use to do conda install -c nvidia cuda-nvcc if it is not there.
ptxas
conda install -c nvidia cuda-nvcc
Thanks for the bug report! We will need to investigate why the conda-forge package doesn't pull in the correct dependencies.
If one just do a fresh conda install of pymbar 4 on a machine without cuda, one could get
It might be good to test if
ptxas
is there when importing pymbar 4 and advise the use to doconda install -c nvidia cuda-nvcc
if it is not there.